Средняя линия фигур. Средняя линия. Средняя Линия Трапеции

Средняя линия фигур. Средняя линия. Средняя Линия Трапеции

Вам интересно, как можно вычислить и найти среднюю линию треугольника. Тогда за дело.

Найти длину средней линии треугольника достаточно просто. Так как у треугольника три стороны, соответственно три угла и возможно может быть при построении три средних линий.

Что представляет собой треугольник:

Три стороны (равносторонний, равнобедренный)

Три угла (соответственно остроугольный, тупоугольный, прямоугольный треугольники)

Что такое средняя линия треугольника

Это отрезок. Отрезок соединяет середину двух сторон треугольника. У любого треугольника три средних линии.

Свойство 1: Средняя линия треугольника, параллельна стороне треугольника и равна его половине. Следовательно, для определения средней линии треугольника достаточно знать длину третьей стороны.

Пример: есть треугольник ABC, известно, что средняя сторона КN проведена параллельно АС. Длинна АС=8 см. AB=4 cм, ВС=4 см. Следовательно, для нахождения средней линии треугольника достаточно АС/2 и получить среднюю линию треугольника. Ответ: 4 см средняя линия в заданном треугольнике по существующим параметрам.

Свойство 2: Если в треугольнике провести три средних линий, то образуется четыре равных подобных треугольника. Коэффициент равен ½.

Свойство 3: Средняя линия равностороннего треугольника разбивает треугольник на трапецию и треугольник.

Пример решения задачи: Если мы нарисуем треугольник, то увидим, что вверху треугольника фигура с тремя углами. Внизу четырёхугольника фигура с двумя противоположными сторонами, которые параллельны друг другу.

Четырёхугольник, у которого только две стороны параллельны называются трапецией .

Параллельные стороны трапеции называются её основаниями , а те стороны, которые не параллельны, называются боковыми сторонами . Если боковые стороны равны, то такая трапеция является равнобедренной. Расстояние между основаниями называется высотой трапеции.

Средняя Линия Трапеции

Средняя линия - это отрезок, соединяющий середины боковых сторон трапеции. Средняя линия трапеции параллельна её основаниям.

Теорема:

Если прямая, пересекающая середину одной боковой стороны, параллельна основаниям трапеции, то она делит пополам вторую боковую сторону трапеции.

Теорема:

Длина средней линии равна среднему арифметическому длин её оснований

MN || AB || DC
AM = MD; BN = NC

MN средняя линия, AB и CD - основания, AD и BC - боковые стороны

MN = (AB + DC)/2

Теорема:

Длина средней линии трапеции равна среднему арифметическому длин её оснований.

Основная задача : Доказать, что средняя линия трапеции делит пополам отрезок, концы которого лежат в середине оснований трапеции.

Средняя Линия Треугольника

Отрезок, соединяющий середины двух сторон треугольника, называется средней линией треугольника. Она параллельна третьей стороне и её длина равна половине длины третьей стороны.
Теорема : Если прямая, пересекающая середину одной стороны треугольника, параллельна другой стороне данного треугольника, то она делит третью сторону пополам.

AM = MC and BN = NC =>

Применение свойств средней линии треугольника и трапеции

Деление отрезка на определённое количество равных частей.
Задача: Разделить отрезок AB на 5 равных частей.
Решение:
Пусть p это случайный луч, у которого начало это точка А, и который не лежит на прямой AB. Мы последовательно откладываем 5 равных сегментов на p AA 1 = A 1 A 2 = A 2 A 3 = A 3 A 4 = A 4 A 5
Мы соединяем A 5 с B и проводим такие прямые через A 4 , A 3 , A 2 и A 1 , которые параллельны A 5 B. Они пересекают AB соответственно в точках B 4 , B 3 , B 2 и B 1 . Эти точки делят отрезок AB на 5 равных частей. Действительно, из трапеции BB 3 A 3 A 5 мы видим, что BB 4 = B 4 B 3 . Таким же образом, из трапеции B 4 B 2 A 2 A 4 получаем B 4 B 3 = B 3 B 2

В то время как из трапеции B 3 B 1 A 1 A 3 , B 3 B 2 = B 2 B 1 .
Тогда из B 2 AA 2 следует, что B 2 B 1 = B 1 A. В заключении получаем:
AB 1 = B 1 B 2 = B 2 B 3 = B 3 B 4 = B 4 B
Ясно, что для разделения отрезка AB на другое количество равных частей, нам нужно проецировать то же самое количество равных сегментов на луч p. И далее продолжать вышеописанным способом.

Средняя линия трапеции, а особенно ее свойства, очень часто используются в геометрии для решения задач и доказательства тех или иных теорем.


– это четырехугольник, у которого только 2 стороны параллельны друг другу. Параллельные стороны называют основаниями (на рисунке 1 - AD и BC ), две другие – боковыми (на рисунке AB и CD ).

Средняя линия трапеции – это отрезок, соединяющий середины ее боковых сторон (на рисунке 1 - KL ).

Свойства средней линии трапеции

Доказательство теоремы о средней линии трапеции

Доказать , что средняя линия трапеции равна полусумме ее оснований и параллельна этим основаниям.

Дана трапеция ABCD со средней линией KL . Для доказательства рассматриваемых свойств требуется провести прямую через точки B и L . На рисунке 2 это прямая BQ . А также продолжить основание AD до пересечения с прямой BQ .

Рассмотрим полученные треугольники LBC и LQD :

  1. По определению средней линии KL точка L является серединой отрезка CD . Отсюда следует, что отрезки CL и LD равны.
  2. ∠ BLC = ∠ QLD , так как эти углы вертикальные.
  3. ∠ BCL = ∠ LDQ , так как эти углы накрест лежащие при параллельных прямых AD и BC и секущей CD .

Из этих 3 равенств следует, что рассмотренные ранее треугольники LBC и LQD равны по 1 стороне и двум прилежащим к ней углам (см. рис. 3). Следовательно, ∠ LBC = ∠ LQD , BC=DQ и самое главное - BL=LQ => KL , являющаяся средней линией трапеции ABCD , также является и средней линией треугольника ABQ . Согласно свойству средней линией треугольника ABQ получаем.

Средняя линия треугольника – это отрезок, соединяющий середины 2-х его сторон. Соответственно, каждого у треугольника три средних линии. Зная качество средней линии, а также длины сторон треугольника и его углы, дозволено обнаружить длину средней линии.

Вам понадобится

  • Стороны треугольника, углы треугольника

Инструкция

1. Пускай в треугольнике ABC MN – средняя линия, соединяющая середины сторон AB (точка M) и AC (точка N).По свойству средняя линия треугольника, соединяющая середины 2-х сторон, параллельна третьей стороне и равна её половине. Значит, средняя линия MN будет параллельна стороне BC и равна BC/2.Следственно, для определения длины средней линии треугольника довольно знать длину стороны именно этой третьей стороны.

2. Пускай сейчас вестимы стороны, середины которых соединяет средняя линия MN, то есть AB и AC, а также угол BAC между ними. Потому что MN – средняя линия, то AM = AB/2, а AN = AC/2.Тогда по теореме косинусов объективно: MN^2 = (AM^2)+(AN^2)-2*AM*AN*cos(BAC) = (AB^2/4)+(AC^2/4)-AB*AC*cos(BAC)/2. Отсель, MN = sqrt((AB^2/4)+(AC^2/4)-AB*AC*cos(BAC)/2).

3. Если знамениты стороны AB и AC, то среднюю линию MN дозволено обнаружить, зная угол ABC либо ACB. Пускай, скажем, знаменит угол ABC. Потому что по свойству средней линии MN параллельна BC, то углы ABC и AMN – соответствующие, и, следственно, ABC = AMN. Тогда по теореме косинусов: AN^2 = AC^2/4 = (AM^2)+(MN^2)-2*AM*MN*cos(AMN). Следственно, сторону MN дозволено обнаружить из квадратного уравнения (MN^2)-AB*MN*cos(ABC)-(AC^2/4) = 0.

Совет 2: Как обнаружить сторону квадратного треугольника

Квадратный треугольник больше верно именуется прямоугольным треугольником. Соотношения между сторонами и углами этой геометрической фигуры детально рассматриваются в математической дисциплине тригонометрии.

Вам понадобится

  • – лист бумаги;
  • – ручка;
  • – таблицы Брадиса;
  • – калькулятор.

Инструкция

1. Обнаружьте сторону прямоугольного треугольника с поддержкой теоремы Пифагора. Согласно этой теореме, квадрат гипотенузы равен сумме квадратов катетов: с2 = a2+b2 , где с – гипотенуза треугольника , a и b – его катеты. Дабы применить это уравнение, надобно знать длину всяких 2-х сторон прямоугольного треугольника .

2. Если по условиям заданы размеры катетов, разыщите длину гипотенузы. Для этого с поддержкой калькулятора извлеките квадратный корень из суммы катетов, всякий из которых заранее возведите в квадрат.

3. Вычислите длину одного из катетов, если вестимы размеры гипотенузы и иного катета. При помощи калькулятора извлеките квадратный корень из разности гипотенузы в квадрате и вестимого катета, также возведенного в квадрат.

4. Если в задаче заданы гипотенуза и один из прилежащих к ней острых углов, используйте таблицы Брадиса. В них приведены значения тригонометрических функций для большого числа углов. Воспользуйтесь калькулятором с функциями синуса и косинуса, а также теоремами тригонометрии, которые описывают соотношения между сторонами и углами прямоугольного треугольника .

5. Обнаружьте катеты при помощи основных тригонометрических функций: a = c*sin ?, b = c*cos ?, где а – катет, противолежащий к углу?, b – катет, прилежащий к углу?. Сходственным образом посчитайте размер сторон треугольника , если заданы гипотенуза и иной острый угол: b = c*sin ?, a = c*cos ?, где b – катет, противолежащий к углу?, а – катет, прилежащий к углу?.

6. В случае, когда вестим катет a и прилежащий к нему острый угол?, не забывайте, что в прямоугольном треугольнике сумма острых углов неизменно равна 90°: ? + ? = 90°. Разыщите значение угла, противолежащего к катету а: ? = 90° – ?. Либо воспользуйтесь тригонометрическими формулами приведения: sin ? = sin (90° – ?) = cos ?; tg ? = tg (90° – ?) = ctg ? = 1/tg ?.

7. Если вестим катет а и противолежащий к нему острый угол?, при помощи таблиц Брадиса, калькулятора и тригонометрических функций вычислите гипотенузу по формуле: c=a*sin ?, катет: b=a*tg ?.

Видео по теме


Самое обсуждаемое
Как открыли днк Кто впервые установил структуру днк Как открыли днк Кто впервые установил структуру днк
Московский государственный текстильный университет им Московский государственный текстильный университет им
Практическое применение Явления полного отражения Практическое применение Явления полного отражения


top