Уравнение плоскости волны. Волновой процесс. Уравнение плоской волны. Волновое уравнение. Основные понятия и определения

Уравнение плоскости волны. Волновой процесс. Уравнение плоской волны. Волновое уравнение. Основные понятия и определения

Уравнением волны называется выражение, которое дает смещение колеблющейся частицы как функцию ее координат х, у, z и времени t:

(имеются в виду координаты равновесного положения частицы). Эта функция должна быть периодической как относительно времени t, так и относительно координат х, у, z. Периодичность по времени вытекает из того, что описывает колебания частицы с координатами х, у, z. Периодичность по координатам следует из того, что точки, отстоящие друг от друга на расстояние К, колеблются одинаковым образом.

Найдем вид функции в случае плоской волны, предполагая, что колебания иосят гармонический характер. Для упрощения направим оси координат так, чтобы ось совпала с направлением распространения волны. Тогда волновые поверхности будут перпендикулярными к оси и, поскольку все точки волновой поверхности колеблются одинаково, смещение будет зависеть только от Пусть колебания точек, лежащих в плоскости (рис. 94.1), имеют вид

Найдем вид колебания точек в плоскости, соответствующей произвольному значению х. Для того чтобы пройти путь от плоскости х= 0 до этой плоскости, волне требуется время - скорость распространения волны).

Следовательно, колебания частиц, лежащих в плоскости х, будут отставать по времени на от колебаний частиц в плоскости т. е. будут иметь вид

Итак, уравнение плоской волны (и продольной, и поперечной), распространяющейся в направлении оси х, выглядит следующим образом:

Величина а представляет собой амплитуду волны. Начальная фаза волны а определяется выбором начал отсчета При рассмотрении одной волны начала отсчета времени и координаты обычно выбираются так, чтобы а была равной нулю. При совместном рассмотрении нескольких волн сделать так, чтобы для всех них начальные фазы равнялись нулю, как правило, не удается.

Зафиксируем какое-либо значение фазы, стоящей в уравнении (94.2), положив

(94.3)

Это выражение определяет связь между временем t и тем местом х, в котором фаза имеет зафиксированное значение. Вытекающеё из него значение дает скорость, с которой перемещается данное значение фазы. Продифференцировав выражение (94.3), получим

Таким образом, скорость распространения волны v в уравнении (94.2) есть скорость перемещения фазы, в связи с чем ее называют фазовой скоростью.

Согласно (94.4) . Следовательно, уравнение (94.2) описывает волну, распространяющуюся в сторону возрастания х. Волна, распространяющаяся в противоположном направлении, описывается уравнением

Действительно, приравняв константе фазу волны (94.5) и продифференцировав получившееся равенство, придем к соотношению

из которого следует, что волна (94.5) распространяется в сторону убывания х.

Уравнению плоской волны можно придать симметричный относительно х и t вид. Для этого введем величину

которая называется волновым числом. Умиожив числитель и знаменатель выражения (94.6) на частоту v, можно представить волновое число в виде

(см. формулу (93.2)). Раскрыв в (94.2) круглые скобки и приняв во внимание (94.7), придем к следующему уравнению плоской волны, распространяющейся вдоль оси х:

Уравнение волны, распространяющейся в сторону убывания х, отличается от (94.8) только знаком при члене

При выводе формулы (94.8) мы предполагали, что амплитуда колебаний не зависит от х. Для плоской волны это наблюдается в том случае, когда энергия волиы не поглощается средой. При распространении в поглощающей энергию среде интенсивность волны С удалением от источника колебаний постепенно уменьшается - наблюдается затухание волны. Опыт показывает, что в однородной среде такое затухание происходит по экспоненциальному закону: с убыванием во времени амплитуды затухающих колебаний; см. формулу (58.7) 1-го тома). Соответственно уравнение плоской волны имеет следующий вид:

Амплитуда в точках плоскости

Теперь найдем уравнение сферической волны. Всякий реальный источник волн обладает некоторой протяженностью. Однако если ограничиться рассмотрением волны на расстояниях от источника, значительно превышающих его размеры, то источник можно считать точечным. В изотропной и однородной среде волна, порождаемая точечным источником, будет сферической. Допустим, что фаза колебаний источника равна Тогда точки, лежащие на волновой поверхности радиуса , будут колебаться с фазой

Волной называется процесс распространения колебания (или какого-то другого сигнала) в пространстве.

Представим, например, что во всех точках плоскости YOZ некоторый физический параметр меняется во времени по гармоническому закону

Пусть колебания этого абстрактного параметра распространяются вдоль оси OX со скоростью v (рис. 13.1.). Тогда в плоскости с координатой x исходные колебания повторятся вновь, но с запаздыванием на секунд:

Рис. 13.1.

Функция (13.1) называется уравнением плоской волны . Эту важную функцию чаще записывают в таком виде

Здесь: Е 0 и w - амплитуда и частота колебаний в волне,

(wt kx + - фаза волны,

a - начальная фаза,

Волновое число,

v - скорость распространения волны.

Совокупность всех точек пространства, в которых колебания происходят в одинаковой фазе, определяет фазовую поверхность . В нашем примере это плоскость.

(wt kx + = F = const - уравнение движения фазовой поверхности в процессе распространения волны. Возьмём производную этого уравнения по времени:

w – k = 0.

Здесь = v ф - скорость движения фазовой поверхности - фазовая скорость .

= v ф = .

Таким образом, фазовая скорость равна скорости распространения волны.

Фазовая поверхность, отделяющая пространство, охваченное волновым процессом, от той части, куда волна еще не дошла, называется фронтом волны. Фронт волны, как одна из фазовых поверхностей, тоже движется с фазовой скоростью. Эта скорость, например, акустической волны в воздухе составляет 330 м/с, а световой (электромагнитной) волны в вакууме - 3×10 8 м/с.

Уравнение волны Е = Е 0 ×cos(wt kx + j) представляет собой решение дифференциального волнового уравнения . Для отыскания этого дифференциального уравнения, продифференцируем уравнение волны (13.2) дважды по времени, а затем - дважды по координате:

,

Сравнив эти два выражения, обнаруживаем, что

.

Но волновое число k = , поэтому

. (13.3)

Это и есть дифференциальное уравнение волнового процесса - волновое уравнение .

Еще раз отметим, что уравнение волны (13.2) есть решение волнового уравнения (13.3).

Волновое уравнение можно записать, конечно, и так

Теперь очевидно, что в волновом уравнении коэффициент при второй производной по координате равен квадрату фазовой скорости волны.

Если, решая задачу о движении, мы получаем дифференциальное уравнение типа

то это означает, что исследуемое движение - собственные затухающие колебания

Если при решении очередной задачи возникло дифференциальное уравнение

то это означает, что исследуется волновой процесс , и скорость распространения этой волны .

При описании волнового процесса требуется найти амплитуды и фазы колебательного движения в различных точках среды и изменение этих величин с течением времени. Эта задача может быть решена в том случае, если известно, по какому закону колеблется и как взаимодействует со средой тело, вызвавшее волновой процесс. Однако во многих случаях не существенно, каким телом возбуждена данная волна, а решается более простая задача. Задано состояние колебательного движения в некоторых точках среды в определенный момент времени и требуется определить состояние колебательного движения в других точках среды.

Для примера рассмотрим решение такой задачи в простом, но вместе с тем важным случае распространения в среде плоской или сферической гармонической волны. Обозначим колеблющуюся величину через u . Этой величиной могут быть: смещение частиц среды относительно их положения равновесия, отклонения давления в данном месте среды от равновесного значения и т.д. Тогда задача будет состоять в отыскании так называемого уравнения волны – выражения, которое задает колеблющуюся величину u как функцию координат точек среды x , y , z и времени t :

u = u (x , y , z , t ). (2.1)

Пусть для простоты u – это смещение точек в упругой среде, когда в ней распространяется плоская волна, а колебания точек имеют гармонический характер. Кроме того, направим оси координат так, чтобы ось совпала с направлением распространения волны. Тогда волновые поверхности (семейство плоскостей) будут перпендикулярными к оси (рис. 7), и поскольку все точки волновой поверхности колеблются одинаково, смещение u будет зависеть только от х и t : u = u (x , t ). Для гармонических колебаний точек, лежащих в плоскости х = 0 (рис. 9), справедливо уравнение:

u (0, t ) = A cos (ωt + α ) (2.2)


Найдем вид колебаний точек плоскости, соответствующей произвольному значению х . Для того чтобы пройти путь от плоскости х = 0 до этой плоскости, волне требуется время τ = х/с (с – скорость распространения волны). Следовательно, колебания частиц, лежащих в плоскости х , будут иметь вид:

Итак, уравнение плоской волны (и продольной, и поперечной), распространяющейся в направлении оси 0х, выглядит следующим образом:

(2.3)

Величина А представляет собой амплитуду волны. Начальная фаза волны α определяется выбором начал отсчета х и t .

Зафиксируем какое-либо значение фазы, стоящей в квадратных скобках уравнения (2.3), положив

(2.4)

Продифференцируем это равенство по времени с учетом того, что циклическая частота ω и начальная фаза α являются постоянными:

Таким образом, скорость распространения волны с в уравнении (2.3) есть скорость перемещения фазы, в связи с чем ее называют фазовой скоростью . В соответствии с (2.5) dx /dt > 0. Следовательно, уравнение (2.3) описывает волну, распространяющуюся в направлении возрастания х , так называемую бегущую прогрессивную волну . Волна, распространяющаяся в противоположном направлении, описывается уравнением

и называется бегущей регрессивной волной . Действительно, приравняв константе фазу волны (2.6) и продифференцировав получившееся равенство, придем к соотношению:

из которого следует, что волна (2.6) распространяется в сторону убывания х .

Введем величину

которая называется волновым числом и равна количеству длин волн, укладывающихся на интервале 2π метров. С помощью формул λ = с/ν и ω = 2πν волновое число можно представить в виде

(2.8)

Раскрыв скобки в формулах (2.3) и (2.6) и приняв во внимание (2.8), придем к следующему уравнению плоских волн, распространяющихся вдоль (знак «-») и против (знак «+») оси 0х :

При выводе формул (2.3) и (2.6) предполагалось, что амплитуда колебаний не зависит от х . Для плоской волны это наблюдается в том случае, когда энергия волны не поглощается средой. Опыт показывает, что в поглощающей среде интенсивность волны по мере удаления от источника колебаний постепенно уменьшается – наблюдается затухание волны по экспоненциальному закону:

.

Соответственно, уравнение плоской затухающей волны имеет вид:

где A 0 – амплитуда в точках плоскости х = 0, а γ – коэффициент затухания.

Теперь найдем уравнение сферической волны . Всякий реальный источник волн обладает некоторой протяженностью. Однако если ограничиться рассмотрением волны на расстояниях от источника, много больших его размеров, то источник можно считать точечным . В изотропной и однородной среде волна, порождаемая точечным источником, будет сферической. Допустим, что фаза колебаний источника ωt+α . Тогда точки, лежащие на волновой поверхности радиуса r , будут колебаться с фазой

Амплитуда колебаний в этом случае, даже если энергия волны не поглощается средой, постоянной не останется – она убывает в зависимости от расстояния от источника по закону 1/r . Следовательно, уравнение сферической волны имеет вид:

(2.11)

где А – постоянная величина, численно равная амплитуде колебаний на расстоянии от источника, равном единице.

Для поглощающей среды в (2.11) нужно добавить множитель e - γr . Напомним, что в силу сделанных предположений уравнение (2.11) справедливо только для r , значительно превышающих размеры источника колебаний. При стремлении r к нулю амплитуда обращается в бесконечность. Этот абсурдный результат объясняется неприменимостью уравнения (2.11) для малых r .

ПЛОСКАЯ ВОЛНА

ПЛОСКАЯ ВОЛНА

Волна, у к-рой направление распространения одинаково во всех точках пространства. Простейший пример - однородная монохроматич. незатухающая П. в.:

и(z, t)=Aeiwt±ikz, (1)

где А - амплитуда, j= wt±kz - , w=2p/Т - круговая частота, Т -период колебаний, k - . Поверхности постоянной фазы (фазовые фронты) j=const П. в. являются плоскостями.

При отсутствии дисперсии, когда vф и vгр одинаковы и постоянны (vгр=vф= v), существуют стационарные (т. е. перемещающиеся как целое) бегущие П. в., к-рые допускают общее представление вида:

u(z, t)=f(z±vt), (2)

где f - произвольная функция. В нелинейных средах с дисперсией также возможны стационарные бегущие П. в. типа (2), но их форма уже не произвольна, а зависит как от параметров системы, так и от характера движения . В поглощающих (диссипативных) средах П. в. уменьшают свою амплитуду по мере распространения; при линейном затухании это может быть учтено путём замены в (1) k на комплексное волновое число kд ± ikм, где kм - коэфф. затухания П. в.

Однородная П. в., занимающая всё бесконечное , является идеализацией, однако любое волновое , сосредоточенное в конечной области (напр., направляемое линиями передачи или волноводами), можно представить как суперпозицию П. в. с тем или иным пространств. спектром k. При этом волна может по-прежнему иметь плоский фазовый фронт, но неоднородное амплитуды. Такие П. в. наз. плоскими неоднородными волнами. Отдельные участки сферич. и цилиндрич. волн, малые по сравнению с радиусом кривизны фазового фронта, приближённо ведут себя как П. в.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ПЛОСКАЯ ВОЛНА

- волна, ук-рой направление распространения одинаково во всех точках пространства.

где А - амплитуда,- фаза,- круговая частота, Т - период колебаний, k - волновое число. = const П. в. являются плоскостями.
При отсутствии дисперсии, когда фазоваяскорость v ф и групповая v гр одинаковы и постоянны (v гр = v ф = v ) существуют стационарные (т. е. перемещающиеся как целое) бегущиеП. в., к-рые можно представить в общем виде

где f - произвольная ф-ция. В нелинейныхсредах с дисперсией также возможны стационарные бегущие П. в. типа (2),но их форма уже не произвольна, а зависит как от параметров системы, таки от характера движения волны. В поглощающих (диссипативных) средах П. k на комплексное волновоечисло k д ik м,где k м - коэф. затухания П. в. Однородная П. в., занимающаявсё бесконечное , является идеализацией, однако любое волновоеполе, сосредоточенное в конечной области (напр., направляемое линиямипередачи или волноводами), можно представить как суперпозициюП. в. с тем или иным пространственным спектром k. При этом волнаможет no-прежнему иметь плоский фазовый фронт, во неоднородное распределениеамплитуды. Такие П. в. наз. плоскими неоднородными волнами. Отд. участкисферич. или цилиндрич. волн, малые по сравнению с радиусом кривизны фазовогофронта, приближённо ведут себя как П. в.

Лит. см. при ст. Волны.

М. А. Миллер, Л. А. Островский.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Указание по мерам безопасности

При выполнении лабораторной работы

Внутри используемых в работе электроизмерительных приборов имеется переменное сетевое напряжение 220 В, 50 Гц, представляющее опасность для жизни.

Наиболее опасными местами являются сетевой выключатель, гнезда предохранителей, шнур сетевого питания приборов, соединительные провода, находящиеся под напряжением.

К выполнению лабораторных работ в учебной лаборатории допускаются обучающиеся прошедшие обучение по мерам безопасности при проведении лабораторных работ с обязательным оформлением в журнале протоколов проверки знаний по мерам безопасности при проведении лабораторных работ.

Перед выполнением лабораторной работы обучающимся
необходимо:

Усвоить методику выполнения лабораторной работы, правила ее безопасного выполнения;

Ознакомиться с экспериментальной установкой; знать безопасные методы и приемы обращения с приборами и оборудованием при выполнении данной лабораторной работы;

Проверить качество сетевых шнуров; убедиться, что все токоведущие части приборов закрыты и недоступны для прикосновения;

Проверить надежность соединения клемм на корпусе прибора с шиной заземления;

В случае обнаружения неисправности немедленно доложить преподавателю или инженеру;

Получить у преподавателя допуск к ее выполнению, подтверждая этим усвоение теоретического материала. Обучающийся не получивший допуск к выполнению лабораторной работы не допускается.

Включение приборов производит преподаватель или инженер. Только после того, как он убедится в исправности приборов и правильности их сборки можно приступать к выполнению лабораторной работы.

При выполнении лабораторной работы обучающиеся должны:

Не оставлять без присмотра включенные приборы;

Не наклоняться к ним близко, не передавать через них какие-либо предметы и не опираться на них;

При работе с грузиками надежно закреплять их крепежными винтами на осях.

замену любого элемента установки, присоединение или разъединение разъемных соединений производить только при отключенном электропитании под четким наблюдением преподавателя или инженера.

Обо всех недостатках, обнаруженных во время выполнения лабораторной работы, сообщить преподавателю или инженеру

По окончании работы отключение аппаратуры и приборов от электросети производит преподаватель или инженер.


Лабораторная работа № 5

ОПРЕДЕЛЕНИЕ СКОРОСТИ ЗВУКА В ВОЗДУХЕ МЕТОДОМ СТОЯЧЕЙ ВОЛНЫ

Цель работы:

ознакомиться с основными характеристиками волновых процессов;

изучить условия образования и особенности стоячей волны.

Задачи работы


определить скорость звука в воздухе методом стоячей волны;

определить для воздуха отношение изобарической теплоемкости к изохорической.

Понятие о волнах.

Тело, совершающее механические колебания, передает в окружающую среду за счет сил трения или сопротивления теплоту, что усиливает беспорядочное движение частиц среды. Однако во многих случаях за счет энергии колебательной системы возникает упорядоченное движение соседних частиц окружающей среды – они начинают совершать вынужденные колебания относительно своего исходного положения под действием упругих сил, связывающих частицы друг с другом. Объем пространства, в котором происходят эти колебания, возрастает с течением времени. Такой процесс распространения колебаний в среде называется волновым движением или просто в о л н о й.
В общем случае наличие упругих свойств в среде не является обязательным для распространения в ней волн. Например, электромагнитные и гравитационные волны распространяются и в вакууме. Поэтому в физике в о л н а м и называют всякие распространяющиеся в пространстве возмущения состояния вещества или поля. Под возмущением понимают отклонение физических величин от их равновесных состояний.

В твердых телах под возмущением понимают периодически изменяющуюся деформацию, порожденную действием периодической силы и вызывающую отклонение частиц среды от положения равновесия – их вынужденные колебания. При рассмотрении процессов распространения волн в телах обычно отвлекаются от молекулярного строения этих тел и рассматривают тела как сплошную среду, непрерывно распределенную в пространстве. Под частицей среды, совершающей вынужденные колебания, понимают малый элемент объема среды, размеры которого в то же время во много раз больше межмолекулярных расстояний. Вследствие действия упругих сил деформация будет распространяться в среде с определенной скоростью, называемой скоростью волны.

Важно отметить, что частицы среды не увлекаются движущейся волной. Скорость их колебательного движения отличается от скорости волны. Траектория частиц представляет собой замкнутую кривую, а их суммарное отклонение за период равно нулю. Поэтому распространение волн не вызывает переноса вещества, хотя при этом переносится энергия от источника колебаний в окружающее пространство.

В зависимости от того, в каком направлении происходят колебания частиц, говорят о волнах продольной или поперечной поляризации.

Волны называются продольными, если смещение частиц среды происходит вдоль направления распространения волны (например, при периодическом упругом сжатии или растяжении тонкого стержня вдоль его оси). Продольные волны распространяются в средах, в которых силы упругости возникают при сжатии или растяжении (т. е. в твердых, жидких и газообразных).

Если частицы колеблются в направлении, перпендикулярном к направлению распространения волны, то волны называются поперечными. Они распространяются только в средах, в которых возможна деформация сдвига (только в твердых телах). Кроме того, поперечные волны распространяются на свободной поверхности жидкости (например, волны на поверхности воды) или на границе раздела двух несмешивающихся жидкостей (например, на границе пресной и соленой воды).

В газовой среде волны представляют собой чередующиеся области более высокого и более низкого давления и плотности. Они возникают в результате вынужденных колебаний частиц газа, происходящих с различной фазой в различных точках. Под действием изменяющегося давления барабанная перепонка уха совершает вынужденные колебания, которые через уникальную сложную систему слухового аппарата вызывают биотоки, протекающие к мозгу.


Уравнение плоской волны. Фазовая скорость

Волновой поверхностью называют геометрическое место точек, колеблющихся в одинаковой фазе. В простейших случаях они имеет форму плоскости или сферы, а соответствующая волна называется плоской или сферической. Фронтом волны называется геометрическое место точек, до которых в данный момент времени доходят колебания. Фронт волны разделяет области пространства, уже вовлеченную в волновой процесс и еще не вовлеченную. Волновых поверхностей существует бесконечное множество и они неподвижны, а фронт волны один и он перемещается с течением времени.

Рассмотрим плоскую волну, распространяющуюся вдоль оси х. Пусть частицы среды, лежащие в плоскости x = 0 , начинают в момент t =0 совершать колебания по гармоническому закону относительно исходного положения равновесия. Это значит, что смещение частиц от их исходного положения f изменяется во времени по закону синуса или косинуса, например:

где f - смещение данных частиц от их исходного положения равновесия в момент времени t , А -максимальное значение смещения (амплитуда); ω - циклическая частота.

Пренебрегая затуханием в среде, получим уравнение колебания частиц, расположенных в плоскости, соответствующей произвольному значению x >0). Пусть волна распространяется в направлении возрастания координаты х . Чтобы пройти путь от плоскости x =0 до указанной плоскости, волне требуется время

где v -скорость перемещения поверхности постоянной фазы (фазовая скорость).

Поэтому колебания частиц, лежащих в плоскости х , начнутся в момент t = τ и будут происходить по такому же закону, что и в плоскости х=0, но с отставанием по времени на величину τ , а именно:

(3)

Иначе говоря, смещение частиц, находившихся в момент t =0 в плоскости х, в момент t будут такими же, как в плоскости х =0, но в более ранний момент времени

t 1 = (4)

С учетом (4), выражение (3) преобразуется:

(5)

Уравнение (5) представляет собой уравнение плоской бегущей волны, распространяющейся вдоль положительного направления оси х . Из него можно определить отклонение частиц среды от равновесия в любой точке пространства с координатой х и в любой момент времени t при распространении указанной волны. Уравнение (5) соответствует случаю, когда частицам в начальный момент была сообщена начальная скорость. Если же в начальный момент частицам сообщено отклонение от положения равновесия без сообщения скорости, в (5) вместо синуса нужно поставить косинус. Аргумент косинуса или синуса называют фазой колебания. Фаза определяет состояние колебательного процесса в данный момент времени (знак и абсолютную величину относительного отклонения частиц от их положения равновесия). Из (5) видно, что фаза колебаний частиц, расположенных в плоскости х , меньше соответствующей величины для частиц, расположенных в плоскости х =0, на величину, равную .

Если плоская волна распространяется в направлении убывания х (налево), то уравнение (5) преобразуется к виду:

(6)

Учитывая, что

запишем (6) в виде:

(8)

где Т - периодколебания, ν - частота.

Расстояние λ, на которое волна распространяется за период Т , называется длиной волны.

Можно также определить длину волны и как расстояние между двумя ближайшими точками, фазы колебаний которых отличаются на 2π (рис.1).

Как отмечено выше, упругие волны в газах представляют собой чередующиеся области с более высоким и более низким давлением и плотностью. Это иллюстрируется рис 1, на котором представлены для некоторого момента времени смещение частиц (а), их скорости (б), давление или плотность (в) в различных точках пространства. Частицы среды движутся со скоростью (не путать с фазовой скоростью v ). Слева и справа от точек A 1 , A 3 , A 5 и др. скорости частиц направлены к этим точкам. Поэтому в данных точках образуются максимумы плотности (давления). Справа и слева от точек A 2 , A 4 , A 6 и др. скорости частиц направлены от данных точек и в них образуются минимумы плотности (давления).

Смещение частиц среды при распространении в ней бегущей волны в различные моменты времени представлены на рис. 2. Как видно, имеется аналогия с волнами на поверхности жидкости. Максимумы и минимумы отклонений от положения равновесия перемещаются в пространстве с течением времени с фазовой скоростью v . С такой же скоростью перемещаются максимумы и минимумы плотности (давления).


Фазовая скорость волны зависит от упругих свойств и плотности среды. Предположим, что имеется длинный упругий стержень (рис. 3) с площадью поперечного сечения, равной S , в котором распространяется продольное возмущение вдоль оси х с плоским волновым фронтом Пусть за промежуток времени от t 0 до t 0 +Δt фронт переместится от точки А до точки В на расстояние АВ = v Δt , где v – фазовая скорость упругой волны. Длительность промежутка Δt возьмем настолько малой, что скорость движения частиц во всем объеме (т.е. между сечениями, проходящими перпендикулярно оси х через точки А и В ) будет одинаковой и равной u . Частицы из точки А за указанный промежуток времени переместятся на расстояние u Δt . Частицы же, расположенные в точке В , в момент t 0 +Δt только начнут движение и их перемещение к данному моменту времени будет равно нулю. Пусть первоначальная длина участка АВ равна l . К моменту t 0 +Δt она изменится на величину u Δt , которая и будет величиной деформации Δl . Масса участка стержня между точками А и В равна Δm = ρSvΔt. Изменение импульса этой массы за промежуток времени от t 0 до t 0 +Δt равно

Δр = ρSvuΔt (10).

Силу, действующую на массу Δm , можно определить из закона Гука:

По второму закону Ньютона , или . Приравни

вая правые части последнего выражения и выражения (10), получим:

откуда следует:

Скорость распространения поперечной волны

где G - модуль сдвига.

Звуковые волны в воздухе являются продольными. Для жидкостей и газов вместо модуля Юнга в формулу (1) входит отношение отклонения давления ΔΡ к относительному изменению объема

(13)

Знак минус означает, что увеличению давления (процессу сжатия среды) соответствует уменьшение объема и наоборот. Полагаяизменения объема и давления бесконечно малыми, можно записать

(14)

При распространении волн в газах давление и плотность периодически повышаются и понижаются (соответственно, при сжатии и разрежении), в результате чего происходит изменение температуры различных участков среды. Сжатие и разрежение происходят так быстро, что смежные участки не успевают обменяться энергией. Процессы, происходящие в системе без теплообмена с окружающей средой, называются адиабатическими. При адиабатическом процессе изменение состояния газа описывается уравнением Пуассона

(15)

Параметр γ называют показателем адиабаты. Он равен отношению молярных теплоемкостей газа при постоянном давлении C p и постоянном объеме C v:

Взяв дифференциал от обеих частей равенства (15), получаем

,

откуда следует:

Подставив (6) в (4), получим для модуля упругости газа

Подставив (7) в (1), найдем скорость упругих волн в газах:

Из уравнения Менделеева-Клапейрона можно выразить плотность газа

, (19)

где - молярная масса.

Подставляя (9) в (8), получим конечную формулу для нахождения скорости звука в газе:

где R - универсальная газовая постоянная, Т - температура газа.

Измерение скорости звука - один из наиболее точных методов определения показателя адиабаты.

Преобразуя формулу (10), получим:

Таким образом, для определения показателя адиабаты достаточно измерить температуру газа и скорость распространения звука.

В дальнейшем более удобно использовать в уравнении волны косинус. Учитывая (19 и 20), уравнение бегущей волны можно представить в виде:

(22)

где - волновое число, показывающее, сколько длин волн укладывается на расстоянии, равном 2π метров.

Для бегущей волны, распространяющейся против положительного направления оси х, получим:

(23)

Особую роль играют гармоническиеволны (см., например, уравнения (5, 6, 22, 23)). Это связано с тем,чтолюбое распространяющееся колебание, какова бы ни была его форма, всегда можно рассматривать как результат суперпозиции (сложения) гармонических волн с соответственно подобранными частотами, амплитудами и фазами.


Стоячие волны.

Особый интерес представляет собой результат интерференции двух волн с одинаковой амплитудой и частотой, распространяющихся навстречу друг другу. На опыте это можно осуществить, если на пути бегущей волны перпендикулярно к направлению распространения поставить хорошо отражающую преграду. В результате сложения (интерференции) падающей и отраженной волн возникнет так называемая стоячая волна.

Пусть падающая волна описывается уравнением (22), а отраженная – уравнением (23). По принципу суперпозиции суммарное смещение равно сумме смещений, создаваемых обеими волнами. Сложение выражений (22) и (23) дает

Это уравнение, называемое уравнением стоячей волны, удобно в дальнейшем анализировать в виде:

, (25)

где множитель

(26)

является амплитудой стоячей волны. Как видноиз выражения (26), амплитуда стоячей волны зависит от координаты точки, но не зависит от времени. У бегущей плоской волны амплитуда не зависит ни от координаты, ни от времени (при отсутствии затухания).

Из (27) и (28) следует, что расстояние между соседними узлами, как и расстояние между соседними пучностями равно , а расстояние между соседними узлом и пучностью равно .

Из уравнения (25) следует, что все точки среды, расположенные между двумя соседними узлами, колеблются в одной фазе, причем значение фазы определяется только временем. В частности, они достигают максимального отклонения в один и тот же момент времени. Для бегущей волны как следует из (16), фаза определяется как временем, так и пространственной координатой. В этом еще одно отличие между стоячими и бегущими волнами. При переходе через узел фаза стоячей волны скачкообразно изменяется на 180 о.

Смещение от положения равновесия для различных моментов времени в стоячей волне приведено на рис. 4. За начальный момент времени принят момент, когда частицы среды максимально отклонены от исходного положения равновесия (кривая 1).

И , представленные кривыми 6, 7, 8 и 9, совпадают с отклонениями в соответствующие моменты первого полупериода (т. е. кривая 6 совпадает с кривой 4 и т.д.). Как видно, с момента смещение частиц снова изменяет знак.

При отражении волн на границе двух сред возникает либо узел, либо пучность (в зависимости от так называемых акустических сопротивлений сред). Акустическим сопротивлением среды называют величину , где . – плотность среды, - скорость упругих волн в среде. Если среда, от которой отражается волна, обладает более высоким акустическим сопротивлением, чем та, в которой эта волна возбуждается, то на границе раздела образуется узел (рис. 5). В этом случае фаза волны при отражении меняется на противоположную (на 180°). При отражении волны от среды с меньшим акустическим сопротивлением изменение фазы колебаний не происходит.

В отличие от бегущей волны, которая переносит энергию, в стоячей волне никакого переноса энергии нет. Бегущая волна может двигаться вправо или влево, а у стоячей волны нет направления распространения. Под термином "стоячая волна" нужно понимать особое колебательное состояние среды, образованное интерферирующими волнами.

В момент, когда частицы среды проходят положение равновесия, полная энергия частиц, захваченных колебанием, равна кинетической. Она сосредоточена в окрестностях пучностей. Напротив, в момент, когда отклонение частиц от положения равновесия максимально, их полная энергия является уже потенциальной. Она сосредоточена вблизи узлов. Таким образом, два раза за период происходит переход энергии от пучностей к соседним узлам и наоборот. В результате средний по времени поток энергии в любом сечении стоячей волны равен нулю.


Самое обсуждаемое
Практическое применение Явления полного отражения Практическое применение Явления полного отражения
Православные школы: достижения и проблемы Православные школы: достижения и проблемы
Формы глаголов в английском языке Формы глаголов в английском языке


top