Химические свойства водорода со сложными веществами. Водород — характеристика, физические и химические свойства. Получение и применение водорода

Химические свойства водорода со сложными веществами. Водород — характеристика, физические и химические свойства. Получение и применение водорода

Обобщающая схема «ВОДОРОД»

I . Водород – химический элемент

а) Положение в ПСХЭ

  • порядковый номер №1
  • период 1
  • группа I (главная подгруппа «А»)
  • относительная масса Ar(Н )=1
  • латинское название Hydrogenium (рождающий воду)

б) Распространённость водорода в природе

Водород - химический элемент.

В земной коре (литосфера и гидросфера) – 1% по массе (10 место среди всех элементов)

АТМОСФЕРА - 0,0001% по числу атомов

Самый распространённый элемент во вселенной 92% от числа всех атомов (основная составная часть звёзд и межзвёздного газа)


Водород – химический

элемент

В соединениях

Н 2 О – вода (11% по массе)

СН 4 – газ метан (25% по массе)

Органические вещества (нефть, горючие природные газы и других)

В организмах животных и растений (то есть в составе белков, нуклеиновых кислот, жиров, углеводов и других)

В теле человека в среднем содержится около 7 килограммов водорода.

в) Валентность водорода в соединениях


II . Водород – простое вещество (Н 2)

Получение

1.Лаборатория (аппарат Киппа)

А) Взаимодействие металлов с кислотами:

Zn + 2HCl = ZnCl 2 + H 2

соль

Б) Взаимодействие активных металлов с водой:

2Na + 2H 2 O = 2NaOH + H 2

основание

2. Промышленность

· Электролиз воды

эл. ток

2H 2 O =2H 2 + O 2

· Из природного газа

t, Ni

CH 4 + 2H 2 O=4H 2 +CO 2

Нахождение водорода в природе.

Водород широко распространен в природе, его содержание в земной коре (литосфера и гидросфера) составляет по массе 1%, а по числу атомов 16%. Водород входит в состав самого распространенного вещества на Земле - воды (11,19% Водорода по массе), в состав соединений, слагающих угли, нефть, природные газы, глины, а также организмы животных и растений (то есть в состав белков, нуклеиновых кислот, жиров, углеводов и других). В свободном состоянии Водород встречается крайне редко, в небольших количествах он содержится в вулканических и других природных газах. Ничтожные количества свободного Водорода (0,0001% по числу атомов) присутствуют в атмосфере. В околоземном пространстве Водород в виде потока протонов образует внутренний ("протонный") радиационный пояс Земли. В космосе Водород является самым распространенным элементом. В виде плазмы он составляет около половины массы Солнца и большинства звезд, основную часть газов межзвездной среды и газовых туманностей. Водород присутствует в атмосфере ряда планет и в кометах в виде свободного Н 2 , метана СН 4 , аммиака NH 3 , воды Н 2 О, радикалов. В виде потока протонов Водород входит в состав корпускулярного излучения Солнца и космических лучей.

Существуют три изотопа водорода:
а) легкий водород – протий,
б) тяжелый водород – дейтерий (D),
в) сверхтяжелый водород – тритий (Т).

Тритий неустойчивый (радиоактивный) изотоп, поэтому в природе он практически не встречается. Дейтерий устойчив, но его очень мало: 0,015% (от массы всего земного водорода).

Валентность водорода в соединениях

В соединениях водород проявляет валентность I .

Физические свойства водорода

Простое вещество водород (Н 2) – это газ, легче воздуха, без цвета, без запаха, без вкуса, t кип = – 253 0 С, водород в воде нерастворим , горюч. Собирать водород можно путем вытеснения воздуха из пробирки или воды. При этом пробирку нужно перевернуть вверх дном.

Получение водорода

В лаборатории водород получают в результате реакции

Zn + H 2 SO 4 = ZnSO 4 + H 2 .

Вместо цинка можно использовать железо, алюминий и некоторые другие металлы, а вместо серной кислоты – некоторые другие разбавленные кислоты. Образующийся водород собирают в пробирку методом вытеснения воды (см. рис. 10.2 б) или просто в перевернутую колбу (рис. 10.2 а).

В промышленности в больших количествах водород получают из природного газа (в основном это метан) при взаимодействии его с парами воды при 800 °С в присутствии никелевого катализатора:

CH 4 + 2H 2 O = 4H 2 +CO 2 (t, Ni)

или обрабатывают при высокой температуре парами воды уголь:

2H 2 O + С = 2H 2 + CO 2 . (t)

Чистый водород получают из воды, разлагая ее электрическим током (подвергая электролизу):

2H 2 O = 2H 2 + O 2 (электролиз).



Водород является самым первым элементом в Периодической системе химических элементов, имеет атомный номер 1 и относительную атомную массу 1,0079. Каковы физические свойства водорода?

Физические свойства водорода

В переводе с латыни водород означает «рождающий воду». Еще в 1766 году английский ученый Г. Кавендиш собрал выделяющийся при действии кислот на металлы «горючий воздух» и стал исследовать его свойства. В 1787 году А. Лавуазье определил этот «горючий воздух» как новый химический элемент, который входит в состав воды.

Рис. 1. А. Лавуазье.

У водорода существуют 2 стабильных изотопа – протий и дейтерий, а также радиоактивный – тритий, количество которого на нашей планете очень мало.

Водород является самым распространенным элементом в космосе. Солнце и большинство звезд имеют водород в своем составе в качестве основного элемента. Также этот газ входит в состав воды, нефти, природного газа. Общее содержание водорода на Земле составляет 1%.

Рис. 2. Формула водорода.

В состав атома этого вещества входит ядро и один электрон. Когда у водорода теряется электрон, он образует положительно заряженный ион, то есть проявляет металлические свойства. Но также атом водорода способен не только терять, но и присоединять электрон. В этом он очень похож на галогены. Поэтому водород в Периодической системе относится и к I и к VII группе. Неметаллические свойства водорода выражены у него в большей степени.

Молекула водорода состоит из двух атомов, связанных между собой ковалентной связью

Водород при обычных условиях является бесцветным газообразным элементом, который не имеет запаха и вкуса. Он в 14 раз легче воздуха, а его температура кипения составляет -252,8 градусов по Цельсию.

Таблица «Физические свойства водорода»

Кроме физических свойств водород обладает и рядом химических свойств. водород при нагревании или под действием катализаторов вступает в реакции с металлами и неметаллами, серой, селеном, теллуром, а также может восстанавливать оксиды многих металлов.

Получение водорода

Из промышленных способов получения водорода (кроме электролиза водных растворов солей) следует отметить следующие:

  • пропускание паров воды через раскаленный уголь при температуре 1000 градусов:
  • конверсия метана водяным паром при температуре 900 градусов:

CH 4 +2H 2 O=CO 2 +4H 2

Приступая к рассмотрению химических и физических свойств водорода, необходимо отметить, что в привычном состоянии, этот химический элемент находится в газообразном виде. Бесцветный газ водород не имеет запаха, он безвкусен. Впервые данный химический элемент был назван водородом после того, как ученым А. Лавуазье были проведены опыты с водой, по результатам которых, мировая наука узнала, что вода – это многокомпонентная жидкость, в состав которой входит Водород. Событие это произошло в 1787 году, но задолго до этой даты водород был известен ученым под названием «горючий газ».

Водород в природе

По данным ученых, водород содержится в земной коре и в воде (приблизительно 11,2% в общем объеме воды). Этот газ входит в состав многих полезных ископаемых, которые человечество на протяжении веков извлекает из недр земли. Частично свойства водорода характерны для нефти, природных газов и глины, для организмов животных и растений. Но в чистом виде, то есть, не соединенный с другими химическими элементами таблицы Менделеева, этот газ встречается крайне редко в природе. Этот газ может выходить на поверхность земли при извержении вулканов. Свободный водород в ничтожных количествах присутствует в атмосфере.

Химические свойства водорода

Поскольку химические свойства водорода неоднообразны, то этот химический элемент относится как к I группе системы Менделеева, так и к VII группе системы. Являясь представителем первой группы, водород является, по сути, щелочным металлом, который имеет степень окисления +1 в большей части соединений, в которые он входит. Такая же валентность характерна для натрия и других щелочных металлов. Ввиду таких химических свойств, водород рассматривается, как элемент, подобный этим металлам.

Если же речь идет о гидридах металлов, то ион водорода имеет отрицательную валентность – его степень окисления равна -1. Na+H- строится по той же схеме, что и хлориду Na+Cl-. Этот факт и является причиной того, чтобы отнести водород к VII группе системы Менделеева. Водород, будучи в состоянии молекулы, при условии, что он пребывает в обычной среде, малоподвижен, и может соединяться исключительно с неметаллами, более активными за него. К таким металлам можно отнести фтор, при наличии света, водород соединяется с хлором. Если водород нагревать, то он становится более активным, вступая в реакции со многими элементами периодической системы Менделеева.

Атомарный водород проявляет более активные химические свойства, чем молекулярный. Молекулы кислорода с формируют воду - Н2 + 1/2О2 = Н2О. При взаимодействии водорода с галогенами, образуются галогеноводороды Н2 + Cl2 = 2НСl, причем в эту реакцию водород вступает при отсутствии света и при достаточно больших отрицательных температурах – до - 252°С. Химические свойства водорода позволяют использовать его для восстановления многих металлов, поскольку вступая в реакцию, водород поглощает у оксидов металлов кислород, например, CuO + H2 = Cu + H2O. Водород участвует в формировании аммиака, взаимодействуя с азотом в реакции ЗН2 + N2 = 2NН3, но при условии, что будет использоваться катализатор, а температура и давление – повышены.

Энергичная реакция происходит при взаимодействии водорода с серой в реакции Н2 + S = H2S, результатом которой становится сероводород. Немного менее активно взаимодействие водорода с теллуром и селеном. Если нет катализатора, то вступает в реакцию с чистым углеродом, водород только при условии, что будут созданы высокие температуры. 2Н2 + С (аморфный) = СН4 (метан). В процессе активности водорода с некоторыми щелочными и прочими металлами, получаются гидриды, например, Н2 + 2Li = 2LiH.

Физические свойства водорода

Водород является очень легким химическим веществом. По крайней мере, ученые утверждают, что на данный момент, нет легче вещества, чем водород. Его масса в 14,4 раза легче за воздух, плотность составляет 0,0899 г/л при 0°С. При температурах в -259,1°С водород способен плавится – это очень критическая температура, которая не характерна для преобразования большинства химических соединений из одного состояния в другое. Только такой элемент, как гелий, превышает физические свойства водорода в этом плане. Сжижение водорода затруднительно, так как его критическая температура равна (-240°С). Водород – наиболее теплопродный газ из всех, известных человечеству. Все, описанные выше свойства, являются наиболее значимыми физическими свойствами водорода, которые используются человеком для конкретных целей. Также данные свойства являются наиболее актуальными для современной науки.

Водород - простое вещество H 2 (диводород, дипротий, легкий водород).

Краткая характеристика водорода :

  • Неметалл.
  • Бесцветный газ, трудно поддающийся сжижению.
  • Плохо растворяется в воде.
  • Лучше растворяется в органических растворителях.
  • Хемосорбируется металлами: железом, никелем, платиной, палладием.
  • Сильный восстановитель.
  • Взаимодействует (при высоких температурах) с неметаллами, металлами, оксидами металлов.
  • Наибольшей восстановительной способностью обладает атомный водород H 0 , получаемый при термическом разложении H 2 .
  • Изотопы водорода:
    • 1 H - протий
    • 2 H - дейтерий (D)
    • 3 H - тритий (Т)
  • Относительная молекулярная масса = 2,016
  • Относительная плотность твердого водорода (t=-260°C) = 0,08667
  • Относительная плотность жидкого водорода (t=-253°C) = 0,07108
  • Избыточное давление (н.у.) = 0,08988 г/л
  • t плавления = -259,19°C
  • t кипения = -252,87°C
  • Объемный коэффициент растворимости водорода:
    • (t=0°C) = 2,15;
    • (t=20°C) = 1,82;
    • (t=60°C) = 1,60;

1. Термическое разложение водорода (t=2000-3500°C):
H 2 ↔ 2H 0

2. Взаимодействие водорода с неметаллами :

  • H 2 +F 2 = 2HF (t=-250..+20°C)
  • H 2 +Cl 2 = 2HCl (при сжигании или на свету при комнатной температуре):
    • Cl 2 = 2Cl 0
    • Cl 0 +H 2 = HCl+H 0
    • H 0 +Cl 2 = HCl+Cl 0
  • H 2 +Br 2 = 2HBr (t=350-500°C, катализатор платина)
  • H 2 +I 2 = 2HI (t=350-500°C, катализатор платина)
  • H 2 +O 2 = 2H 2 O:
    • H 2 +O 2 = 2OH 0
    • OH 0 +H 2 = H 2 O+H 0
    • H 0 +O 2 = OH 0 +O 0
    • O 0 +H 2 = OH 0 +H 0
  • H 2 +S = H 2 S (t=150..200°C)
  • 3H 2 +N 2 = 2NH 3 (t=500°C, катализатор железо)
  • 2H 2 +C(кокс) = CH 4 (t=600°C, катализатор платина)
  • H 2 +2C(кокс) = C 2 H 2 (t=1500..2000°C)
  • H 2 +2C(кокс)+N 2 = 2HCN (t более 1800°C)

3. Взаимодействие водорода со сложными веществами :

  • 4H 2 +(Fe II Fe 2 III)O 4 = 3Fe+4H 2 O (t более 570°C)
  • H 2 +Ag 2 SO 4 = 2Ag+H 2 SO 4 (t более 200°C)
  • 4H 2 +2Na 2 SO 4 = Na 2 S+4H 2 O (t = 550-600°C, катализатор Fe 2 O 3)
  • 3H 2 +2BCl 3 = 2B+6HCl (t = 800-1200°C)
  • H 2 +2EuCl 3 = 2EuCl 2 +2HCl (t = 270°C)
  • 4H 2 +CO 2 = CH 4 +2H 2 O (t = 200°C, катализатор CuO 2)
  • H 2 +CaC 2 = Ca+C 2 H 2 (t более 2200°C)
  • H 2 +BaH 2 = Ba(H 2) 2 (t до 0°C, раствор)

4. Участие водорода в окислительно-восстановительных реакциях :

  • 2H 0 (Zn, разб. HCl)+KNO 3 = KNO 2 +H 2 O
  • 8H 0 (Al, конц. KOH)+KNO 3 = NH 3 +KOH+2H 2 O
  • 2H 0 (Zn, разб. HCl)+EuCl 3 = 2EuCl 2 +2HCl
  • 2H 0 (Al)+NaOH(конц.)+Ag 2 S = 2Ag↓+H 2 O+NaHS
  • 2H 0 (Zn, разб. H 2 SO 4)+C 2 N 2 = 2HCN

Водородные соединения

D 2 - дидейтерий :

  • Тяжелый водород.
  • Бесцветный газ, трудно поддаваемый сжижению.
  • Дидейтерия содержится в природной водороде 0,012-0,016% (по массе).
  • В газовой смеси дидейтерия и протия изотопный обмен протекает при высоких температурах.
  • Плохорастворим в обычной и тяжелой воде.
  • С обычной водой изотопный обмен незначителен.
  • Химические свойства аналогичны легкому водороду, но дидейтерий обладает меньшей реакционной способностью.
  • Относительная молекулярная масса = 4,028
  • Относительная плотность жидкого дидейтерия (t=-253°C) = 0,17
  • t плавления = -254,5°C
  • t кипения = -249,49°C

T 2 - дитритий :

  • Сверхтяжелый водород.
  • Бесцветный радиоактивный газ.
  • Период полураспада 12,34 года.
  • В природе дитритий образуется в результате бомбардировки нейтронами космического излучения ядер 14 N, следы дитрития обнаружены в природных водах.
  • Получают дитритий в ядерном реакторе бомбардировкой лития медленными нейтронами.
  • Относительная молекулярная масса = 6,032
  • t плавления = -252,52°C
  • t кипения = -248,12°C

HD - дейтериоводород :

  • Бесцветный газ.
  • Не растворяется в воде.
  • Химические свойства аналогичны H 2 .
  • Относительная молекулярная масса = 3,022
  • Относительная плотность твердого дейтериоводорода (t=-257°C) = 0,146
  • Избыточное давление (н.у.) = 0,135 г/л
  • t плавления = -256,5°C
  • t кипения = -251,02°C

Оксиды водорода

H 2 O - вода :

  • Бесцветная жидкость.
  • По изотопному составу кислорода вода состоит из H 2 16 O с примесями H 2 18 O и H 2 17 O
  • По изотопному составу водорода вода состоит из 1 H 2 O с примесью HDO.
  • Жидкая вода подвергается протолизу (H 3 O + и OH -):
    • H 3 O + (катион оксония) является самой сильной кислотой в водном растворе;
    • OH - (гидроксид-ион) является самым сильным основанием в водном растворе;
    • Вода - самый слабый сопряженный протолит.
  • Со многими веществами вода образует кристаллогидраты.
  • Вода является химически активным веществом.
  • Вода является универсальным жидким растворителем неорганических соединений.
  • Относительная молекулярная масса воды = 18,02
  • Относительная плотность твердой воды (льда) (t=0°C) = 0,917
  • Относительная плотность жидкой воды:
    • (t=0°C) = 0,999841
    • (t=20°C) = 0,998203
    • (t=25°C) = 0,997044
    • (t=50°C) = 0,97180
    • (t=100°C) = 0,95835
  • плотность (н.у.) = 0,8652 г/л
  • t плавления = 0°C
  • t кипения = 100°C
  • Ионное произведение воды (25°C) = 1,008·10 -14

1. Термическое разложение воды:
2H 2 O ↔ 2H 2 +O 2 (выше 1000°C)

D 2 O - оксид дейтерия :

  • Тяжелая вода.
  • Бесцветная гигроскопичная жидкость.
  • Вязкость выше, чем у воды.
  • Смешивается с обычной водой в неограниченных количествах.
  • При изотопном обмене образуется полутяжелая вода HDO.
  • Растворяющая способность ниже, чем у обычной воды.
  • Химические свойства оксида дейтерия аналогичны химическим свойствам воды, но все реакции протекают медленнее.
  • Тяжелая вода присутствует в природной воде (массовое отношение к обычной воде 1:5500).
  • Оксид дейтерия получают многократным электролизом природной воды, при котором тяжелая вода накапливается в остатке электролита.
  • Относительная молекулярная масса тяжелой воды = 20,03
  • Относительная плотность жидкой тяжелой воды (t=11,6°C) = 1,1071
  • Относительная плотность жидкой тяжелой воды (t=25°C) = 1,1042
  • t плавления = 3,813°C
  • t кипения = 101,43°C

T 2 O - оксид трития :

  • Сверхтяжелая вода.
  • Бесцветная жидкость.
  • Вязкость выше, а растворяющая способность ниже, чем у обычной и тяжелой воды.
  • Смешивается с обычной и тяжелой водой в неограниченных количествах.
  • Изотопный обмен с обычной и тяжелой водой приводит к образованию HTO, DTO.
  • Химические свойства сверхтяжелой воды аналогичны химическим свойствам воды, но все реакции протекают еще медленнее, чем в тяжелой воде.
  • Следы оксида трития находят в природной воде и атмосфере.
  • Получают сверхтяжелую воду пропусканием трития над раскаленным оксидом меди CuO.
  • Относительная молекулярная масса сверхтяжелой воды = 22,03
  • t плавления = 4,5°C

Атом водорода имеет электронную формулу внешнего (и единственного) электронного уровня 1s 1 . С одной стороны, по наличию одного электрона на внешнем электронном уровне атом водорода похож на атомы щелочных металлов. Однако, ему, так же как и галогенам не хватает до заполнения внешнего электронного уровня всего одного электрона, поскольку на первом электронном уровне может располагаться не более 2-х электронов. Выходит, что водород можно поместить одновременно как в первую, так и в предпоследнюю (седьмую) группу таблицы Менделеева, что иногда и делается в различных вариантах периодической системы:

С точки зрения свойств водорода как простого вещества, он, все-таки, имеет больше общего с галогенами. Водород, также как и галогены, является неметаллом и образует аналогично им двухатомные молекулы (H 2).

В обычных условиях водород представляет собой газообразное, малоактивное вещество. Невысокая активность водорода объясняется высокой прочностью связи между атомами водорода в молекуле, для разрыва которой требуется либо сильное нагревание, либо применение катализаторов, либо и то и другое одновременно.

Взаимодействие водорода с простыми веществами

с металлами

Из металлов водород реагирует только с щелочными и щелочноземельными! К щелочным металлам относятся металлы главной подгруппы I-й группы (Li, Na, K, Rb, Cs, Fr), а к щелочно-земельным — металлы главной подгруппы II-й группы, кроме бериллия и магния (Ca, Sr, Ba, Ra)

При взаимодействии с активными металлами водород проявляет окислительные свойства, т.е. понижает свою степень окисления. При этом образуются гидриды щелочных и щелочноземельных металлов, которые имеют ионное строение. Реакция протекает при нагревании:

Следует отметить, что взаимодействие с активными металлами является единственным случаем, когда молекулярный водород Н 2 является окислителем.

с неметаллами

Из неметаллов водород реагирует только c углеродом, азотом, кислородом, серой, селеном и галогенами!

Под углеродом следует понимать графит или аморфный углерод, поскольку алмаз — крайне инертная аллотропная модификация углерода.

При взаимодействии с неметаллами водород может выполнять только функцию восстановителя, то есть только повышать свою степень окисления:

Взаимодействие водорода со сложными веществами

с оксидами металлов

Водород не реагирует с оксидами металлов, находящихся в ряду активности металлов до алюминия (включительно), однако, способен восстанавливать многие оксиды металлов правее алюминия при нагревании:

c оксидами неметаллов

Из оксидов неметаллов водород реагирует при нагревании с оксидами азота, галогенов и углерода. Из всех взаимодействий водорода с оксидами неметаллов особенно следует отметить его реакцию с угарным газом CO.

Смесь CO и H 2 даже имеет свое собственное название – «синтез-газ», поскольку из нее в зависимости от условий могут быть получены такие востребованные продукты промышленности как метанол, формальдегид и даже синтетические углеводороды:

c кислотами

С неорганическими кислотами водород не реагирует!

Из органических кислот водород реагирует только с непредельными, а также с кислотами, содержащими функциональные группы способные к восстановлению водородом, в частности альдегидные, кето- или нитрогруппы.

c солями

В случае водных растворов солей их взаимодействие с водородом не протекает. Однако при пропускании водорода над твердыми солями некоторых металлов средней и низкой активности возможно их частичное или полное восстановление, например:

Химические свойства галогенов

Галогенами называют химические элементы VIIA группы (F, Cl, Br, I, At), а также образуемые ими простые вещества. Здесь и далее по тексту, если не сказано иное, под галогенами будут пониматься именно простые вещества.

Все галогены имеют молекулярное строение, что обусловливает низкие температуры плавления и кипения данных веществ. Молекулы галогенов двухатомны, т.е. их формулу можно записать в общем виде как Hal 2 .

Следует отметить такое специфическое физическое свойство йода, как его способность к сублимации или, иначе говоря, возгонке . Возгонкой , называют явление, при котором вещество, находящееся в твердом состоянии, при нагревании не плавится, а, минуя жидкую фазу, сразу же переходит в газообразное состояние.

Электронное строение внешнего энергетического уровня атома любого галогена имеет вид ns 2 np 5 , где n – номер периода таблицы Менделеева, в котором расположен галоген. Как можно заметить, до восьмиэлектронной внешней оболочки атомам галогенов не хватает всего одного электрона. Из этого логично предположить преимущественно окисляющие свойства свободных галогенов, что подтверждается и на практике. Как известно, электроотрицательность неметаллов при движении вниз по подгруппе снижается, в связи с чем активность галогенов уменьшается в ряду:

F 2 > Cl 2 > Br 2 > I 2

Взаимодействие галогенов с простыми веществами

Все галогены являются высокоактивными веществами и реагируют с большинством простых веществ. Однако, следует отметить, что фтор из-за своей чрезвычайно высокой реакционной способности может реагировать даже с теми простыми веществами, с которыми не могут реагировать остальные галогены. К таким простым веществам относятся кислород, углерод (алмаз), азот, платина, золото и некоторые благородные газы (ксенон и криптон). Т.е. фактически, фтор не реагирует лишь с некоторыми благородными газами.

Остальные галогены, т.е. хлор, бром и йод, также являются активными веществами, однако менее активными, чем фтор. Они реагируют практически со всеми простыми веществами, кроме кислорода, азота, углерода в виде алмаза, платины, золота и благородных газов.

Взаимодействие галогенов с неметаллами

водородом

При взаимодействии всех галогенов с водородом образуются галогеноводороды с общей формулой HHal. При этом, реакция фтора с водородом начинается самопроизвольно даже в темноте и протекает со взрывом в соответствии с уравнением:

Реакция хлора с водородом может быть инициирована интенсивным ультрафиолетовым облучением или нагреванием. Также протекает со взрывом:

Бром и йод реагируют с водородом только при нагревании и при этом, реакция с йодом является обратимой:

фосфором

Взаимодействие фтора с фосфором приводит к окислению фосфора до высшей степени окисления (+5). При этом происходит образование пентафторида фосфора:

При взаимодействии хлора и брома с фосфором возможно получение галогенидов фосфора как в степени окисления + 3, так и в степени окисления +5, что зависит от пропорций реагирующих веществ:

При этом в случае белого фосфора в атмосфере фтора, хлора или жидком броме реакция начинается самопроизвольно.

Взаимодействие же фосфора с йодом может привести к образованию только триодида фосфора из-за существенно меньшей, чем у остальных галогенов окисляющей способности:

серой

Фтор окисляет серу до высшей степени окисления +6, образуя гексафторид серы:

Хлор и бром реагируют с серой, образуя соединения, содержащие серу в крайне не свойственных ей степенях окисления +1 и +2. Данные взаимодействия являются весьма специфичными, и для сдачи ЕГЭ по химии умение записывать уравнения этих взаимодействий не обязательно. Поэтому три нижеследующих уравнения даны скорее для ознакомления:

Взаимодействие галогенов с металлами

Как уже было сказано выше, фтор способен реагировать со всеми металлами, даже такими малоактивными как платина и золото:

Остальные галогены реагируют со всеми металлами кроме платины и золота:

Реакции галогенов со сложными веществами

Реакции замещения с галогенами

Более активные галогены, т.е. химические элементы которых расположены выше в таблице Менделеева, способны вытеснять менее активные галогены из образуемых ими галогеноводородных кислот и галогенидов металлов:

Аналогичным образом, бром вытесняет серу из растворов сульфидов и сероводорода:

Хлор является более сильным окислителем и окисляет сероводород в его водном растворе не до серы, а до серной кислоты:

Взаимодействие галогенов с водой

Вода горит во фторе синим пламенем в соответствии с уравнением реакции:

Бром и хлор реагируют с водой иначе, чем фтор. Если фтор выступал в роли окислителя, то хлор и бром диспропорционируют в воде, образуя смесь кислот. При этом реакции обратимы:

Взаимодействие йода с водой протекает в настолько ничтожно малой степени, что им можно пренебречь и считать, что реакция не протекает вовсе.

Взаимодействие галогенов с растворами щелочей

Фтор при взаимодействии с водным раствором щелочи опять же выступает в роли окислителя:

Умение записывать данное уравнение не требуется для сдачи ЕГЭ. Достаточно знать факт о возможности такого взаимодействия и окислительной роли фтора в этой реакции.

В отличие от фтора, остальные галогены в растворах щелочей диспропорционируют, то есть одновременно и повышают и понижают свою степень окисления. При этом, в случае хлора и брома в зависимости от температуры возможно протекание по двум разным направлениям. В частности, на холоду реакции протекают следующим образом:

а при нагревании:

Йод реагирует с щелочами исключительно по второму варианту, т.е. с образованием йодата, т.к. гипоиодит не устойчив не только при нагревании, но также при обычной температуре и даже на холоду.


Самое обсуждаемое
Как найти период тригонометрической функции Как найти общий период Как найти период тригонометрической функции Как найти общий период
Камешкир объявления. Русский Камешкир. Кто-кто в теремочке живет? Сложные времена, возрождение Камешкир объявления. Русский Камешкир. Кто-кто в теремочке живет? Сложные времена, возрождение
Атмосферное электричество своими руками Атмосферное электричество своими руками


top