Трение, его виды. Трение скольжения и трение качения. Сила и коэффициент трения. Борьба с износом трущихся деталей. Закон сухого трения. Моделирование фрикционных автоколебаний. Модели Барриджа и Кнопова Что такое сила сухого трения

Трение, его виды. Трение скольжения и трение качения. Сила и коэффициент трения. Борьба с износом трущихся деталей. Закон сухого трения. Моделирование фрикционных автоколебаний. Модели Барриджа и Кнопова Что такое сила сухого трения

Слободецкий И. Сухое трение //Квант. - 2002. - № 1. - С. 29-31.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Почему при резком торможении автомобиль заносит? Почему скрипит плохо смазанная дверь? Почему движущийся равномерно смычок заставляет звучать скрипичную струну? Все это объясняется свойствами сил трения, о которых и пойдет речь в этой статье.

С трением мы сталкиваемся на каждом шагу. Вернее было бы сказать, что без трения мы и шагу ступить не можем. Но несмотря на ту большую роль, которую играет трение в нашей жизни, до сих пор не создана достаточно полная картина возникновения трения. Это связано даже не с тем, что трение имеет сложную природу, а скорее с тем, что опыты с трением очень чувствительны к обработке поверхности и поэтому трудно воспроизводимы.

Вот пример. Английский физик Гарди исследовал зависимость силы трения между стеклянными пластинками от температуры. Он тщательно обрабатывал пластинки хлорной известью и обмывал их водой, удаляя жиры и загрязнения. Трение увеличивалось с температурой. Опыт был повторен много раз, и каждый раз получались примерно одни и те же результаты. Но однажды, моя пластинки, Гарди протер их пальцами - трение перестало зависеть от температуры. Протерев пластинки, Гарди, как он сам считал, удалил с них очень тонкий слой стекла, изменивший свои свойства из-за взаимодействия с хлоркой и водой.

Когда говорят о трении, различают три несколько отличных физических явления: сопротивление при движении тела в жидкости или газе - его называют жидким трением; сопротивление, возникающее, когда тело скользит по какой- нибудь поверхности, - трение скольжения, или сухое трение; сопротивление, возникающее при качении тела, - трение качения. Эта статья посвящена сухому трению.

Первые исследования трения, о которых мы знаем, были проведены Леонардо да Винчи примерно 500 лет назад. Он измерял силу трения, действующую на деревянные параллелепипеды, скользящие по доске, причем, ставя бруски на разные грани, определял зависимость силы трения от площади опоры. Но работы Леонардо да Винчи стали известны уже после того, как классические законы трения были вновь открыты французскими учеными Амонтоном и Кулоном в 17-18 веках. Вот эти законы:

  1. Величина силы трения F прямо пропорциональна величине силы нормального давления N тела на поверхность, по которой движется тело, т.е. F = μN , где μ - безразмерный коэффициент, называемый коэффициентом трения.
  2. Сила трения не зависит от площади контакта между поверхностями.
  3. Коэффициент трения зависит от свойств трущихся поверхностей.
  4. Сила трения не зависит от скорости движения тела.

Триста лет дальнейших исследований трения подтвердили правильность трех первых законов, предложенных Амонтоном и Кулоном. Неверным оказался лишь последний - четвертый. Но это стало ясно много позже» когда появились железные дороги и машинисты заметили, что при торможении состав ведет себя не так, как предсказывали инженеры.

Амонтон и Кулон объясняли происхождение трения довольно просто. Обе поверхности неровные - они покрыты небольшими горбами и впадинами. При движении выступы цепляются друг за друга, и поэтому тело все время поднимается и опускается. Для того чтобы втащить тело на «холм», к нему нужно приложить определенную силу. Если выступ больше, то и сила нужна побольше. Но это объяснение противоречит одному очень существенному явлению: на преодоление трения тратится энергия. Так, кубик, скользящий по горизонтальной поверхности, рано или поздно останавливается. А поднимаясь и опускаясь, тело не тратит своей энергии. Или вспомните аттракцион «Американские горки». Когда.санки скатываются с горки, их потенциальная энергия переходит в кинетическую, и скорость санок возрастает, а когда санки въезжают на новую возвышенность, кинетическая энергия, наоборот, переходит в потенциальную. Энергия санок уменьшается за счет трения, но не из-за подъемов и спусков: Аналогично обстоит дело и при движении одного тела по поверхности другого. Здесь потери энергии на трение также не могут быть связаны.с тем, что выступы одного тела «взбираются» на бугры другого.

Есть еще возражения. Например, простые опыты по измерению силы.трения между полированными стеклянными пластинками показали, что при улучшении полировки поверхностей сила трения сначала не меняется, а, затем возрастает, а не убывает, как следовало бы ожидать на основании модели явления, предложенной Амонтоном и Кулоном.

Механизм трения значительно более сложен. Обсудим такую модель. Из-за неровностей поверхностей они касаются, друг друга только в отдельных точках на вершинах выступов. Здесь молекулы соприкасающихся тел подходят на расстояния, соизмеримые с расстоянием между молекулами в самих телах, и сцепляются. Образуется прочная связь, которая рвется при нажиме на тело. При движении тела связи постоянно возникают и рвутся. При этом возникают колебания молекул. На эти колебания и тратится энергия.

Площадь действительного контакта обычно порядка тысяч квадратных микронов. Она практически не зависит от размеров тела и определяется природой поверхностей, их обработкой, температурой и силой нормального давления. Если на тело надавить, то выступы сминаются, и площадь действительного контакта увеличивается. Увеличивается и сила трения.

При значительной шероховатости поверхностей большую роль в увеличении силы трения начинает играть механическое зацепление между «холмами». Они при движении сминаются, и при этом тоже возникают колебания молекул.

Теперь понятен опыт с полированными стеклянными пластинками. Пока поверхности были «грубые», число контактов было невелико, а после хорошей полировки оно возросло. Можно привести еще пример увеличения трения с улучшением поверхности. Если взять два металлических бруска с чистыми полированными поверхностями, то они слипаются. Трение здесь становится очень большим, так как площадь действительного контакта велика. Силы молекулярного сцепления, которые ответственны за трение, превращают два бруска в монолит.

Рассмотренная нами модель трения довольно груба. Мы не останавливались здесь на диффузии молекул, т.е. на проникновении молекул одного тела в другое, на роли электрических зарядов, возникающих на соприкасающихся поверхностях, на механизме действия смазки. Эти вопросы во многом неясны, а объяснения спорны. Можно только удивляться тому, что при такой сложности трение описывается столь простым законом: F = μN . И хотя коэффициент трения μ не очень постоянен и несколько меняется от одной точки поверхности к другой, для многих поверхностей, с которыми мы часто сталкиваемся в технике, можно делать достаточно хорошие оценки ожидаемой силы трения.

Сухое трение имеет одну существенную особенность: наличие трения покоя. В жидкости или газе трение возникает только при движении тела, и тело можно сдвинуть, приложив к нему даже очень маленькую силу. Однако при сухом трении тело начинает двигаться только тогда, когда проекция приложенной к нему силы \(~\vec F\) на плоскость, касательную к поверхности, на которой лежит тело, станет больше некоторой величины (рис. 1). Пока тело не начало скользить, действующая на него сила трения равна касательной составляющей приложенной силы и направлена в противоположную сторону. При увеличении приложенной силы сила трения тоже возрастает, пока не достигает максимальной величины, равной μN , при которой начинается скольжение. Дальше сила трения уже не меняется.

Часто об этом забывают при решении задач. На вопрос, какая сила трения действует на стол массой 30 кг, стоящий на полу, если коэффициент трения равен 0,4, большинство уверенно отвечает: 120 Н, что неверно. Сила трения равна нулю - иначе стол поехал бы в сторону действия силы трения, так как других горизонтальных сил нет.

Итак, если тело покоится, то, для того чтобы сдвинуть его с места, к телу нужно приложить силу, большую максимально возможной силы трения покоя, которая обусловлена прочностью молекулярных связей. А как обстоит дело, если тело уже движется? Какую силу нужно приложить для того, чтобы тело начало двигаться еще и в другом направлении? Оказывается, сколь угодно малую. Связано это как раз с тем, что сила трения не может быть больше максимальной силы трения покоя.

Попробуйте проделать простой опыт. Возьмите книжку и положите ее одним краем на другую книжку потолще. Получится наклонная плоскость. Теперь положите на эту плоскость спичечный коробок, к которому привязана нитка. Если коробок скользит, то уменьшите наклон плоскости, взяв книжку-подставку потоньше. Потяните за нитку коробок вбок. При этом он поедет еще и вниз! Уменьшите наклон плоскости и опять потяните за нитку. Та же картина. Коробок соскальзывает даже при очень малых углах наклона плоскости. Сила трения, раньше удерживавшая коробок на плоскости, стала почему-то очень маленькой.

Постараемся понять, в чем здесь дело. Если бы коробок двигался только горизонтально, то параллельно ребру наклонной плоскости на него действовала бы сила трения, равная μN . Для того чтобы коробок при этом не соскальзывал вниз, вверх на него должна действовать сила трения, равная по величине проекции силы тяжести коробка на наклонную плоскость. Равнодействующая этих двух сил трения больше μN , а-этого быть не может. Значит, коробок должен соскальзывать с наклонной плоскости.

Теперь представим себе такую ситуацию. Возьмем брусок, привяжем к нему нить и, положив брусок на горизонтальную плоскость, будем тянуть за нить с постоянной скоростью υ 1 , (рис.2). Приложив к бруску силу, перпендикулярную \(~\vec \upsilon_1\), его можно заставить двигаться еще и в этом направлении с постоянной скоростью \(~\vec \upsilon_2\). Сила трения при этом будет равна μN и направлена противоположно скорости \(~\vec \upsilon\) движения бруска относительно плоскости (\(~\vec \upsilon = \vec \upsilon_1 + \vec \upsilon_2\)).

Разложим силу трения на две составляющие - по направлению скоростей \(~\vec \upsilon_1\) и \(~\vec \upsilon_2\):

\(~\begin{matrix} F_1 = F_{TP} \cos \beta \\ F_2 = F_{TP} \sin \beta \end{matrix}\) ,

где β - угол между векторами \(~\vec \upsilon_1\) и \(~\vec \upsilon\), a \(~\operatorname{tg} \beta = \frac{\upsilon_2}{\upsilon_1}\) . Составляющая \(~\vec F_1\) силы трения уравновешивает силу натяжения нити, а составляющая \(~\vec F_2\) - «боковую» силу, приложенную к бруску. Так как

\(~\sin \beta = \frac{\operatorname{tg} \beta}{\sqrt{1 + \operatorname{tg}^2 \beta}}\) ,

\(~F_2 = F_{TP} \frac{\frac{\upsilon_2}{\upsilon_1}}{\sqrt{1 + \left(\frac{\upsilon_2}{\upsilon_1} \right)^2}} = F_{TP} \frac{\upsilon_2}{\sqrt{\upsilon^2_1 + \upsilon^2_2}}\) .

Если υ 2 << υ 1 , то угол β мал и sin β ≈ tg β . В этом случае

\(~F_2 = F_{TP} \operatorname{tg} \beta = \mu N \frac{\upsilon_2}{\upsilon_1}\) ,

и составляющая силы трения, препятствующая движению бруска «вбок», оказывается пропорциональной скорости этого движения. Картина получается такой, как при малых скоростях в случае жидкого трения. А это означает, что брусок, движущийся в некотором направлении, можно заставить двигаться еще и в перпендикулярном направлении сколь угодно малой силой.

Любопытный вывод можно теперь сделать относительно коробка, равномерно движущегося по наклонной плоскости (рис.3). Здесь \(~F_2 = mg \sin \alpha\), a \(~N = mg \cos \alpha\) (m - масса коробка, α - угол наклона плоскости к горизонту). Поэтому

\(~mg \sin \alpha = \mu mg \cos \alpha \frac{\upsilon_2}{\sqrt{\upsilon^2_1 + \upsilon^2_2}}\) ,

\(~\upsilon_2 = \upsilon_1 \frac{\operatorname{tg} \alpha}{\sqrt{\mu^2 - \operatorname{tg}^2 \alpha}}\) .

Это справедливо, конечно, лишь при tg α < μ , так как при больших углах наклона плоскости к горизонту коробок уже не удерживается на плоскости силой трения. При малых углах наклона плоскости к горизонту (таких, что tg α << μ )

\(~\upsilon_2 = \upsilon_1 \frac{\operatorname{tg} \alpha}{\mu}\) ,

т.е. скорость соскальзывания коробка пропорциональна скорости его движения параллельно ребру наклонной плоскости и тангенсу угла наклона плоскости к горизонту.

Явление, о котором шла речь, встречается довольно часто. Например, известно, что при резком торможении электродвигателя ремень передачи часто соскальзывает со шкивов. Происходит это потому, что при торможении двигателя ремень начинает проскальзывать относительно шкивов, и достаточно небольшой силы, чтобы сдвинуть ремень вбок. Так как обычно имеется небольшой перекос в установке шкивов и ремня, то такой силой является составляющая силы натяжения ремня.

Вот еще примеры. Когда хотят вытащить гвоздь из стенки без помощи клещей, его сгибают и тащат, поворачивая одновременно вокруг оси. По той же причине при резком торможении автомобиль теряет управление и машину «заносит»: колеса скользят по дороге, а за счет неровностей дороги возникает боковая сила.

Остановимся теперь на последнем законе Амонтона - Кулона: сила трения не зависит от скорости тела. Это не совсем так. Вопрос о зависимости силы трения от скорости имеет очень важное практическое значение. И хотя эксперименты здесь связаны со многими специфическими трудностями, они окупаются использованием полученных сведений - например, в теории резания металлов, в расчетах движения пуль и снарядов в стволе и т.д.

Обычно считают, что, для того чтобы сдвинуть тело с места, к нему нужно приложить большую силу, чем для того, чтобы тащить тело. В большинстве случаев это связано с загрязнениями поверхностей трущихся тел. Так, для чистых металлов такого скачка силы трения не наблюдается. Опыты с движением пули в стволе показали, что с увеличением скорости пули величина силы трения сначала быстро убывает, потом она уменьшается все медленнее, а затем (при скоростях больше 100 м/с) начинает возрастать. График зависимости силы трения от скорости показан на рисунке 4. Грубо это можно объяснить тем, что в месте контакта выделяется много тепла. При скоростях порядка 100 м/с температура в месте контакта может достигать нескольких тысяч градусов, и между поверхностями образуется слой расплавленного металла - трение становится жидким. А при больших скоростях сила жидкого трения пропорциональна квадрату скорости.

Интересно, что примерно такую же зависимость от скорости имеет сила трения смычка о струну. Именно поэтому мы можем слушать игру на смычковых инструментах - скрипке, виолончели, альте.

При равномерном движении смычка струна увлекается им и натягивается. Вместе с натяжением струны увеличивается сила трения между смычком и струной. Когда величина силы трения становится максимально возможной, струна начинает проскальзывать относительно смычка. Если бы сила трения не зависела от относительной скорости смычка и струны, то, очевидно, отклонение струны от положения равновесия не изменялось бы. Но при проскальзывании трение уменьшается, поэтому струна начинает двигаться к положению равновесия. При этом относительная скорость струны увеличивается, а это еще уменьшает силу трения. Когда же струна, совершив колебание, движется в обратном направлении, ее скорость относительно смычка уменьшается, смычок опять захватывает струну, и все повторяется сначала. Так возбуждаются колебания струны. Эти колебания незатухающие, поскольку энергия, потерянная струной при ее движении, каждый раз восполняется работой силы трения, подтягивающей струну до положения, при котором струна срывается.

Этим можно и закончить статью о сухом трении - явлении, природу которого мы еще не понимаем достаточно хорошо, но умеем описывать с помощью законов, выполняющихся с удовлетворительной точностью. Это дает нам возможность объяснять многие физические явления и делать необходимые расчеты.

Sausoji trintis statusas T sritis automatika atitikmenys: angl. Coulomb friction; dry friction; solid friction; unlubricated friction vok. Coulombsche Reibung, f; Ruhereibung, f; Trockenreibung, f rus. сухое трение, n pranc. frottement à sec, m;… … Automatikos terminų žodynas

сухое трение - sausoji trintis statusas T sritis fizika atitikmenys: angl. dry friction; solid friction; unlubricated friction vok. trockene Reibung, f; Trockenreibung, f rus. сухое трение, n pranc. frottement à sec, m; frottement immédiat, m … Fizikos terminų žodynas

трение без смазочного материала (сухое трение) - 3.4 трение без смазочного материала (сухое трение): Трение двух тел при отсутствии на поверхности трения введённого смазочного материала любого вида. Источник: СТ ЦКБА 086 2010: Арматура трубопроводная. Технические данные и характеристики для… …

Трение - – процесс, возникающий на поверхности соприкосновения тел, как находящихся в состоянии покоя, так и взаимного перемещения. … … Энциклопедия терминов, определений и пояснений строительных материалов

У этого термина существуют и другие значения, см. Радиационное трение. Трение процесс взаимодействия тел при их относительном движении (смещении) либо при движении тела в газообразной или жидкой среде. По другому называется фрикционным… … Википедия

Механич. сопротивление, возникающее в плоскости касания двух прижатых друг к другу тел при их относит. перемещении. Сила сопротивления F, направленная противоположно относит. перемещению данного тела, наз. силой трения, действующей на это тело. Т … Физическая энциклопедия

Внешнее, мех. сопротивление перемещению тел по пов сти друг друга. Сила сопротивления, действующая противоположно направлению перемещения данного тела, наз. силой Т. Работа сил Т. переходит в тепло. Т., возникающее в момент начала движения одного … Химическая энциклопедия

внешнее трение скольжения - контактное трение механическое сопротивление движению одного тела по поверхности другого; в очаге деформации возникает при взаимодействии инструмента и обрабатываемого материала. Особенности контактного трения при обработке… … Энциклопедический словарь по металлургии

Смазочный материал, а также нанесение и действие смазочного материала, уменьшающего силу трения между движущимися частями механизмов и их изнашивание. Смазочные материалы попутно могут выполнять также функции охлаждения, защиты от коррозии,… … Энциклопедия Кольера

СТ ЦКБА 086-2010: Арматура трубопроводная. Технические данные и характеристики для силовых расчетов арматуры - Терминология СТ ЦКБА 086 2010: Арматура трубопроводная. Технические данные и характеристики для силовых расчетов арматуры: 3.1 коэффициент трения: Отношение силы трения двух тел к нормальной силе, прижимающей эти тела друг к другу. Определения… … Словарь-справочник терминов нормативно-технической документации

Диаграмма Герси Штрибека Режимы смазки – условия работы смазываемых деталей механизмов, характеризующие их контактное взаимодействие при трении. Используются в трибо … Википедия

Книги

  • Сухое трение в задачах механики , В. В. Андронов , В. Ф. Журавлев , В монографии рассматриваются в историческом и содержательном аспектах закономерности сил сухого трения и способы их аналитического описания в задачах механики. Обращается внимание на часто… Категория: Механика Издатель: Регулярная и хаотическая динамика ,
  • Сухое трение и односторонние связи в механике твердого тела , Г. М. Розенблат , Настоящая работа посвящена исследованиям в области решения некоторых задач статики и динамики твердого тела при наличии сил сухого трения и односторонних связей. Книга состоит из трех… Категория: Физика Издатель:

Внешнее трение твердого тела по твердому телу называется сухим трением.

Величина трения зависит от состояния поверхности соприкос­новения и скорости относительного перемещения тел.

В возникновении сил трения существенную роль играют силы молекулярного притяжения, действующие между молекулами со­прикасающихся тел, и механические силы, которые возникают в за­цеплениях отдельных выступов, всегда имеющихся даже на хорошо отшлифованных поверхностях. Действительное соприкосновение тел происходит при этом на отдельных участках, общая площадь которых значительно меньше видимой площади соприкосновения. На этих участках даже малые нагрузки создают высокие местные давления, вызывающие деформации поверхностного слоя и взаим­ное - внедрение отдельных микрочастей тел.

Таким образом, сила сухого трения обусловлена следующими основными факторами: упругой и пластической деформациями неровностей при сцеплении и действием молекулярных сил. Строгой теории сил трения до сих пор не существует.

Различают два вида сухого трения: трение скольжения и трение качения. Первое возникает при движении груза по плоскости, оси колеса во втулке, гвоздя, вбиваемого в доску; второе - при дви­жении колеса автомобиля, велосипеда по поверхности Земли, шариков шарикоподшипника в оправе. (Трение качения мы рассмотрим в главе о вращательном движении твердых тел.)

Поместим на горизонтальную поверхность стола брусок, при­крепим к его торцу нить и перекинем ее через блок (рис.3).

К ви­сящему концу нити будем прикладывать последовательно возрастаю­щие нагрузки. Брусок останется в покое при любых нагрузках, меньших по весу некоторого значения G макс. Следовательно, на брусок, пока он покоится, действует в направлении, противополож­ном приложенной силе, сила трения:
Сила трения, действующая между соприкасающимися телами в состоянии покоя, называетсясилой трения покоя. Она равна по величине и противоположна по направлению силе, понуждающей тело к движению, и меняется по величине при ее из­менении. Существование сил трения покоя, видимо, связано с проявлением сил межмолекулярного взаимодействия и с наличием еще до начала скольжения малых обрати­мых деформаций неровностей по­верхности.

При достижении внешней силой предельного значения силы трения покоя F макс возникает скольжение тел. Законы трения скольжения были сформулированы французским ученым Амонтоном (1699 г.) и не­зависимо от него Кулоном (1781 г.). Величина максимальной силы трения покоя пропорциональна силе реакции R n , действующей нормально к поверхностям сопри­косновения тел:

(2)

где - коэффициент трения покоя, зависящий только от свойств поверхностей соприкасающихся тел. Выражение (2) называютзаконом Амонтона.

Значение коэффициента трения проще всего найти методом пре­дельного угла,. Для этого измеряют угол.наклона плоскости, при котором начинается скольжение тела, лежащего на ней (рис. 4).

Рис.4

Тело и плоскость изготовляют из материалов, для которых хотят найти значение . В момент начала скольжения тела по плоскости сила трения равна тангенциальной (направленной параллельно плоскости) составляющей силы тяжести:
. Реакция плоскости:
, гдеm -масса тела.

Отсюда в соответствии с формулой (2)

(3)

т. е. коэффициент трения покоя численно равен тангенсу предель­ного угла ().

Строго говоря, коэффициент трения покоя непостоянен, он меняется в зависимости от давления между телами, от температуры и т. п. Поэтому закон Амонтона можно рассматривать лишь как приближенный. Если сила, действующая на тело, больше предельного значения силы трения покоя F > F макс , то тело приобретает ускорение и сила трения покоя переходит в силу трения скольжения. В некоторых специальных случаях (трение металлических тел с очищенной поверхностью и т. п.) сила трения скольжения для сравнительно небольшого интервала скоростей примерно равна предельной силе трения покоя и не зависит от скорости движения. График зависи­мости силы трения F тр от скорости v для этого случая дан на рисун­ке 5. Эта зависимость называется законом Кулона. Для относитель­ной скорости, равной нулю (v =0), сила трения F тр не однозначна и может принимать любые значения от + F макс до - F макс . Следова­тельно, для кулоновских сил трения коэффициент трения опреде­ляет величину не только максимальной силы трения покоя, но и величину силы трения скольжения.

Рис.5
Рис.6

В общем же случае сила трения скольжения зависит от относительной скорости тел. Характер этой зависимости изображен на рисунке 6. При скорости v =0 сила трения может принимать любые значения, по абсолютной величине меньшие или равные F макс, Для некоторого весьма малого интервала значений скорости сила трения приближенно постоянна, а затем уменьшается, достигает минимума и начинает возрастать.

Измерение сил трения скольжения производят с помощью при­боров, называемых трибометрами. Принцип действия трибометра: одно из испытуемых тел А (рис.1) приводится в движение относительно второго Б , к телу Б (контртело) прикрепляется динамометр, который измеряет тангенциальную силу, необходимую для удержания контртела в покое.

Виды сухого трения. Трение покоя – сила между покоящимися друг относительно друга телами. Трение скольжения – сила, возникающая при скольжении одного тела по поверхности другого. Трение качения – возникает, если одно тело катится по поверхности другого тела. При движении твердых тел в жидкостях возникает сила вязкого трения.

Слайд 3 из презентации «Сила трения 7 класс» . Размер архива с презентацией 1282 КБ.

Физика 7 класс

краткое содержание других презентаций

«Давление газа 7 класс» - Работу выполнила: ученица 7 «а» класса Магомедова Бажи. От температуры От концентрации (числа частиц в единице объема) От массы частиц. 7 класс. Давление газа. Давление в газах. Содержание. Давление газа зависит:

«Плавание судов физика» - Ватерлиния. Водоизмещение. Содержание: Плавание судов. Грузоподъёмность. Теперь давайте рассмотрим физическое явление -. Осадка. Принцип плавания судов. Принцип плавания судов. 2. Характеристики судна: осадка; ватерлиния; водоизмещение; грузоподъёмность. Водоизмещение судна? определяется суммированием веса порожнего судна и дедвейта.

«7 класс урок Сила трения» - Тема урока:»сила трения». Задание 1. Определить зависимость силы трения от массы тела. Практическая работа «Измерение силы. Ход урока. Fтр. Что делать? 7 класс. СИЛА ТРЕНИЯ ПОКОЯ возникает при трении покоя. Сила трения.

«Задачи на давление» - M=60 кг. 2. Решение: Сила. 5. (Па). 10. S=400 см2. Единицы давления. Давление =. F. Н. Дано:

«Физика 7 класс Давление» - Барометр, анероид. 11.Насосы 12.Выталкивающая сила. Н 0,57 кН = ? гН = ? Па. Н 380 Н = ? кН II.вариант: 1.Определить барометром атмосферное давление в Па, кПа, мм.рт.ст. 2.Выразить: 3 н/см2 = ? Воздухоплавание. IV. Почему газы оказывают давление? Давление жидкости на дно сосуда. Формула для вычисления давления? Ход урока: I.Организационный момент II.

«Давление 7 класс» - Тест. Уменьшение давления в технике. Сила. 300000 кПа. Закладка фундамента здания. Приложен к опоре или подвесу. Сила тяжести. Увеличение давления в природе. Повторите 10 раз. Как увеличить давление Как уменьшить давление. Сила – мера взаимодействия тел. P=F/S. Жало насекомого. Вес тела. Сила, с которой Земля притягивает к себе тело. Единица давления – ньютон на квадратный метр, называется Паскалем.

Доклад

Закон сухого трения. Моделирование фрикционных автоколебаний. Модели Барриджа и Кнопова

Сухое трение возникает между поверхностями твердых тел в отсутствие смазки.

Сухое трение, в свою очередь, подразделяется на трение скольжения и трение качения .

Законы сухого трения были сформулированы Кулоном. Величина максимальной силы трения покоя / № вг зависит от величины силы нормального давления между поверхностями. Если в нашем опыте (рис. 87) увеличивать силу нормального давления, то примерно пропорционально этой силе будет возрастать и величина того груза, который нужно положить на чашку, чтобы возникло скольжение.

Законы сухого трения применимы для твердых поверхностей. Смазка лыж нужна не столько для уменьшения трения, сколько для устранения возможного прилипания снега к лыжам.

Рассмотрим законы сухого трения .

Рассмотрим сначала законы сухого трения . Такое трение возникает не только при скольжении одного тела по поверхности другого, но и при всякой попытке вызвать такое скольжение. В последнем случае трение называется трением покоя или трением сцепления. Наличие трения покоя - характерная д особенность сухого трения. В более общем смысле, безотносительно к тому, между какими телами возникает трение, оно называется сухим, если силы трения не исчезают при обращении в нуль относительных скоростей соприкасающихся тел. В противоположном случае трение называется жидким. Приложим затем к бруску горизонтальную силу, лежащую в вертикальной плоскости, проходящей через его центр масс, как можно ближе к поверхности стола, чтобы предотвратить опрокидывание бруска, когда он придет в движение. Опыт показывает, что если сила не превосходит некоторой определенной величины, то брусок не приходит в движение. Это и есть сила трения, а именно трения покоя. Такая же сила трения, но в противоположном направлении, действует на поверхность стола со стороны бруска.

Вибродиагностика параметров сухого некулонова трения при фрикционных автоколебаниях

Динамические процессы в механических устройствах с контактирующими и трущимися элементами в кинематических парах, таких как направляющие суппортов станков, робототехнические системы, фрикционные муфты, сцепления, подшипники скольжения валов и др., могут сопровождаться возникновением сложных и плохо контролируемых, а значит, и таких трудно устранимых явлений, как фрикционные автоколебания. Результатом фрикционных автоколебаний в машинах является снижение показателей качества технологических процессов, точности позиционирования, усталостные разрушения и повышенные износы деталей.

Причиной возникновения фрикционных автоколебаний является нелинейная «падающая» характеристика силы сухого трения от скорости относительного скольжения контактирующих поверхностей. В этой связи определение динамических, то есть постоянно изменяющихся во времени и в функции других величин, параметров сухого некулонова трения носит важный и актуальный характер. Решение этой задачи позволит эффективнее осуществлять диагностику трущихся и контактирующих узлов машин, делать надежный прогноз динамического поведения их кинематических пар, например, прогнозирование фрикционных автоколебаний, а также обеспечит возможность целенаправленного управления процессом трения. Идентифицируемые параметры действующих нелинейных сил сухого трения могут быть использованы в качестве диагностических признаков для оценки технического состояния такого класса объектов, в том числе на дихотомическом уровне («годен» - «негоден»).

Однако непосредственное измерение действующих сил сухого трения возможно лишь триботехническими методами и подходами и весьма сложно реализуемо в упругих колебательных системах. Поэтому для идентификации динамических параметров сухого трения приходится использовать косвенные методы, основанные на измерении колебательного отклика в динамической системе.

Рассмотрим один из предлагаемых методов идентификации параметров сухого некулонова трения, реализуемый при исследовании фрикционных автоколебаний.

Расчетная динамическая схема рассматриваемой системы представлена на рис. 1.

Рис. 1. Расчетная динамическая схема системы для исследования фрикционных автоколебаний

Дифференциальное уравнение динамики данной системы имеет вид:

,

где C - коэффициент жесткости упругого элемента;- коэффициент вязкого сопротивления;=const - постоянная скорость перемещения правого конца упругого элемента;

закон изменения силы сухого некулонова трения с падающей характеристикой от скорости (рис. 2).


Таким образом, предложенная методика, испытательный стенд и аппаратурно-вычислительный комплекс для исследования динамики фрикционных автоколебательных процессов позволяют проводить идентификацию динамических параметров силы сухого некулонова трения и реализовывать на этой основе процедуры вибрационной диагностики различных пар трения, предрасположенных к возникновению фрикционных автоколебаний.

Модель Барриджа и Кнопова

Модель Барриджа-Кнопова (Б-К), была создана более 40 лет тому назад с целью объяснить появление повторных ударов при землетрясениях.

трение кулон качение скольжение

Суть модели Б-К можно понять из рисунка, на котором показано, что движущаяся плита соединена с неподвижной плитой посредством N дискретных элементов (блоков), связанных между собой и плитами посредством «пружин». Рассмотрим один из блоков. Идея данной модели заключается в том, что пока на этот блок действует сила, меньшая заданной пороговой, он неподвижен. При достижении порога блок «срывается» скачкообразно. Взаимное влияние блоков, заключающееся в том, что сорвавшийся тянет за собой и другие, может привести к одновременному срыву сразу нескольких соседних элементов системы. Это, по Б-К, и есть «главный удар» землетрясения, в то время как «прыжки» других блоков, это повторные удары, или афтершоки. Модель Б-К исследовалась в лаборатории экспериментально и на компьютере, - численно. В результате было показано, что модель проявляет свойства, присущие экспериментальному закону повторяемости землетрясений Гутенберга-Рихтера. В экспериментах наблюдалось подобие главного удара (main shock), форшоков и афтершоков.

При экспериментальном изучении поведения образцов горных пород при нагружении внешним давлением было обнаружено, что действующая на образец сила изменяется в зависимости от величины регистрируемого изменения длины образца в «виде пилы». Б-К модель нашла геологическое объяснение этим результатам как «прерывистое скольжение» (stick-slip) двух плит друг по другу вдоль разлома при наличии трения.

Несмотря на то, что модель Б-К была предложена еще во второй половине прошлого века, интерес к ней у ученых возрос лишь в последние годы. Это объясняется тем, что наметились определенные успехи в физике нелинейных явлений, в частности, в области самоорганизующихся систем. Модель Б-К была признана как вполне подходящая основа для отработки этих идей и моделирования соответствующих систем. Кроме этого, в настоящее время принято считать, что эта модель, из всех других, наиболее адекватна описывает процесс землетрясения.

Все Б-К модели подчиняются экспериментальному закону Гутенберга-Рихтера, согласно которому число землетрясений N с энергией Е:

Опишем детально двумерную версию модели Б-К. Все блоки системы находятся на платформе. Между платформой и блоками есть трение. Каждый блок системы соединен с четырьмя соседями с помощью пружин. Также, каждый блок еще одной пружиной присоединен к верхней большой движущейся платформе. Движение блоков вызывается относительным смещением двух плит. Когда сила, действующая на блок становится больше некоторой пороговой (Fcritical, максимальное значение трения покоя), блок «срывается». В модели предполагается, что после срыва на блок действует нулевая сила (т.е. равнодействующая равна нулю), а силы, действующие на соседей, пересчитываются. Это может привести к срыву кого-то из соседей, а значит к цепной реакции (землетрясению). Общее количество сорвавшихся в одном таком процессе ячеек и задает размер соответствующего землетрясения. Для начала, представим данную двухмерную блочно-пружинную модель в виде клеточного автомата. Зададим массив блоков размером L1xL2, каждому блоку поставим в соответствие его координаты (i, j). 1≤i≤L1, 1≤j≤L2.

Через xi,j обозначено смещение блока (i, j) от положения равновесия. Полная сила, приложенная к этому блоку, задается выражением:

Где К1, К2, КL - коэффициенты жесткости соответствующих пружин, xi,j - смещение блока (i, j) относительно положения равновесия. При движении одной из плит относительно другой сила, действующая на каждый блок, растет постоянно, пока не достигнет критического значения, после чего начнется процесс релаксации.


Самое обсуждаемое
Практическое применение Явления полного отражения Практическое применение Явления полного отражения
Православные школы: достижения и проблемы Православные школы: достижения и проблемы
Формы глаголов в английском языке Формы глаголов в английском языке


top