Числовые множества числовая прямая числовые промежутки. Числовые промежутки. Функция.График функции. Способы задания функции

Числовые множества числовая прямая числовые промежутки. Числовые промежутки. Функция.График функции. Способы задания функции

«Таблицы по алгебре 7 класс» - Разность квадратов. Выражения. Содержание. Таблицы алгебра.

«Числовые функции» - Множество Х называют областью задания или об-ластью определения функции f и обозначают D (f). График функции. Однако не всякая линия является графиком некоторой функции. Пример 1. Парашютист прыгает из «зависшего» вертолета. Лишь одно число. Кусочное задание функций. Явления природы тесно связаны друг с другом.

«Числовые последовательности» - Урок-конференция. «Числовые последовательности». Геометрическая прогрессия. Способы задания. Арифметическая прогрессия. Числовые последовательности.

«Предел числовой последовательности» - Решение: Способы задания последовательностей. Ограниченность числовой последовательности. Величина уn называется общим членом последовательности. Предел числовой последовательности. Непрерывность функции в точке. Пример: 1, 4, 9, 16, …, п2, … - ограничена снизу 1. Заданием аналитической формулы. Свойства пределов.

«Числовая последовательность» - Числовая последовательность (числовой ряд): числа, выписанные в определённом порядке. 2. Способы задания последовательностей. 1. Определение. Обозначение последовательности. Последовательности. 1. Формула n-го члена последовательности: - позволяет найти любой член последовательности. 3. График числовой последовательности.

«Таблицы» - Добыча нефти и газа. Таблица 2. Таблица 5. Табличные информационные модели. Порядок построения таблицы типа ОС. Таблица 4. Годовые оценки. Табличный номер. Таблицы типа «Объекты – объекты». Ученики 10 «Б» класса. Структура таблицы. Таблицы типа объекты-свойства. Описываются пары объектов; Свойство только одно.

Среди множеств чисел имеются множества, где объектами выступают числовые промежутки. При указывании множества проще определить по промежутку. Поэтому записываем множества решений, используя числовые промежутки.

Данная статья дает ответы на вопросы о числовых промежутках, названиях, обозначениях, изображениях промежутков на координатной прямой, соответствии неравенств. В заключение будет рассмотрена таблица промежутков.

Определение 1

Каждый числовой промежуток характеризуется:

  • названием;
  • наличием обычного или двойного неравенства;
  • обозначением;
  • геометрическим изображением на координатой прямой.

Числовой промежуток задается при помощи любых 3 способов из выше приведенного списка. То есть при использовании неравенства, обозначения, изображения на координатной прямой. Данный способ наиболее применимый.

Произведем описание числовых промежутков с выше указанными сторонами:

Определение 2

  • Открытый числовой луч. Название связано с тем, что его опускают, оставляя открытым.

Этот промежуток имеет соответствующие неравенства x < a или x > a , где a является некоторым действительным числом. То есть на такое луче имеются все действительные числа, которые меньше a - (x < a) или больше a - (x > a) .

Множество чисел, которые будут удовлетворять неравенству вида x < a обозначается виде промежутка (− ∞ , a) , а для x > a , как (a , + ∞) .

Геометрический смыл отрытого луча рассматривает наличие числового промежутка. Между точками координатной прямой и ее числами имеется соответствие, благодаря которому прямую называем координатной. Если необходимо сравнить числа, то на координатной прямой большее число находится правее. Тогда неравенство вида x < a включает в себя точки, которые расположены левее, а для x > a – точки, которые правее. Само число не подходит для решения, поэтому на чертеже обозначают выколотой точкой. Промежуток, который необходим, выделяют при помощи штриховки. Рассмотрим рисунк, приведенный ниже.

Из вышеприведенного рисунка видно, что числовые промежутки соответствуют части прямой, то есть лучам с началом в a . Иначе говоря, называется лучами без начала. Поэтому он и получил название открытый числовой луч.

Рассмотрим несколько примеров.

Пример 1

При заданном строгом неравенстве x > − 3 задается открытый луч. Эту запись можно представить в виде координат (− 3 , ∞) . То есть это все точки, лежащие правее, чем - 3 .

Пример 2

Если имеем неравенство вида x < 2 , 3 , то запись (− ∞ , 2 , 3) является аналогичной при задании открытого числового луча.

Определение 3

  • Числовой луч. Геометрический смысл в том, что начало не отбрасывается, иначе говоря, луч оставляет за собой свою полноценность.

Его задание идет с помощью нестрогих неравенств вида x ≤ a или x ≥ a . Для такого вида приняты специальные обозначения вида (− ∞ , a ] и [ a , + ∞) , причем наличие квадратной скобки имеет значение того, что точка включена в решение или в множество. Рассмотрим рисунок, приведеный ниже.

Для наглядного примера зададим числовой луч.

Пример 3

Неравенство вида x ≥ 5 соответствует записи [ 5 , + ∞) , тогда получаем луч такого вида:

Определение 4

  • Интервал. Задавание при помощи интервалов записывается при помощи двойных неравенств a < x < b , где а и b являются некоторыми действительными числами, где a меньше b , а x является переменной. На таком интервале имеется множество точек и чисел, которые больше a , но меньше b . Обозначение такого интервала принято записывать в виде (a , b) . Наличие круглых скобок говорит о том, что число a и b не включены в это множество. Координатная прямая при изображении получает 2 выколотые точки.

Рассмотрим рисунок, приведенный ниже.

Пример 4

Пример интервала − 1 < x < 3 , 5 говорит о том, что его можно записать в виде интервала (− 1 , 3 , 5) . Изобразим на координатной прямой и рассмотрим.

Определение 5

  • Числовой отрезок. Данный промежуток отличается тем, что он включает в себя граничные точки, тогда имеет запись вида a ≤ x ≤ b . Такое нестрогое неравенство говорит о том, что при записи в виде числового отрезка применяют квадратные скобки [ a , b ] , значит, что точки включаются во множество и изображаются закрашенными.

Пример 5

Рассмотрев отрезок, получим, что его задание возможно при помощи двойного неравенства 2 ≤ x ≤ 3 , которое изображаем в виде 2 , 3 . На координатной прямой данный точки будут включены в решение и закрашены.

Определение 6 Пример 6

Если имеется полуинтервал (1 , 3 ] , тогда его обозначение можно в виде двойного неравенства 1 < x ≤ 3 , при чем на координатной прямой изобразится с точками 1 и 3 , где 1 будет исключена, то есть выколота на прямой.

Определение 7

Промежутки могут быть изображены в виде:

  • открытого числового луча;
  • числового луча;
  • интервала;
  • числового отрезка;
  • полуинтервала.

Чтобы упростить процесс вычисления, необходимо пользоваться специальной таблицей, где имеются обозначения всех видов числовых промежутков прямой.

Название Неравнство Обозначение Изображение
Открытый числовой луч x < a - ∞ , a
x > a a , + ∞
Числовой луч x ≤ a (- ∞ , a ]
x ≥ a [ a , + ∞)
Интервал a < x < b a , b
Числовой отрезок a ≤ x ≤ b a , b

Полуинтервал

К числовым промежуткам относятся лучи, отрезки, интервалы и полуинтервалы.

Виды числовых промежутков

Название Изображение Неравенство Обозначение
Открытый луч x > a (a ; +∞)
x < a (-∞; a )
Замкнутый луч x a [a ; +∞)
x a (-∞; a ]
Отрезок a x b [a ; b ]
Интервал a < x < b (a ; b )
Полуинтервал a < x b (a ; b ]
a x < b [a ; b )

В таблице a и b - это граничные точки, а x - переменная, которая может принимать координату любой точки, принадлежащей числовому промежутку.

Граничная точка - это точка, определяющая границу числового промежутка. Граничная точка может как принадлежать числовому промежутку, так и не принадлежать ему. На чертежах граничные точки, не принадлежащие рассматриваемому числовому промежутку, обозначают незакрашенным кругом, а принадлежащие - закрашенным кругом.

Открытый и замкнутый луч

Открытый луч - это множество точек прямой, лежащих по одну сторону от граничной точки, которая не входит в данное множество. Открытым луч называется именно из-за граничной точки, которая ему не принадлежит.

Рассмотрим множество точек координатной прямой, имеющих координату, большую 2, а, значит, расположенных правее точки 2:

Такое множество можно задать неравенством x > 2. Открытые лучи обозначаются с помощью круглых скобок - (2; +∞), данная запись читается так: открытый числовой луч от двух до плюс бесконечности.

Множество, которому соответствует неравенство x < 2, можно обозначить (-∞; 2) или изобразить в виде луча, все точки которого лежат с левой стороны от точки 2:

Замкнутый луч - это множество точек прямой, лежащих по одну сторону от граничной точки, принадлежащей данному множеству. На чертежах граничные точки, принадлежащие рассматриваемому множеству, обозначаются закрашенным кругом.

Замкнутые числовые лучи задаются нестрогими неравенствами. Например, неравенства x ⩾ 2 и x ⩽ 2 можно изобразить так:

Обозначаются данные замкнутые лучи так: , читается это так: числовой луч от двух до плюс бесконечности и числовой луч от минус бесконечности до двух. Квадратная скобка в обозначении показывает, что точка 2 принадлежит числовому промежутку.

Отрезок

Отрезок - это множество точек прямой, лежащих между двумя граничными точками, принадлежащими данному множеству. Такие множества задаются двойными нестрогими неравенствами.

Рассмотрим отрезок координатной прямой с концами в точках -2 и 3:

Множество точек, из которых состоит данный отрезок, можно задать двойным неравенством -2 ⩽ x ⩽ 3 или обозначить [-2; 3], такая запись читается так: отрезок от минус двух до трёх.

Интервал и полуинтервал

Интервал - это множество точек прямой, лежащих между двумя граничными точками, не принадлежащими данному множеству. Такие множества задаются двойными строгими неравенствами.

Рассмотрим отрезок координатной прямой с концами в точках -2 и 3:

Множество точек, из которых состоит данный интервал, можно задать двойным неравенством -2 < x < 3 или обозначить (-2; 3). Такая запись читается так: интервал от минус двух до трёх.

Полуинтервал - это множество точек прямой, лежащих между двумя граничными точками, одна из которых принадлежит множеству, а другая не принадлежит. Такие множества задаются двойными неравенствами:

Обозначаются данные полуинтервалы так: (-2; 3] и [-2; 3). Читается это так: полуинтервал от минус двух до трёх, включая 3 , и полуинтервал от минус двух до трёх, включая минус два.


Среди числовых множеств, то есть множеств , объектами которых являются числа, выделяют так называемые числовые промежутки . Их ценность в том, что очень легко вообразить множество, соответствующее указанному числовому промежутку, и наоборот. Поэтому с их помощью удобно записывать множество решений неравенства.

В этой статье мы разберем все виды числовых промежутков. Здесь мы дадим их названия, введем обозначения, изобразим числовые промежутки на координатной прямой, а также покажем, какие простейшие неравенства им соответствуют. В заключение наглядно представим всю информацию в виде таблицы числовых промежутков.

Навигация по странице.

Виды числовых промежутков

Каждому числовому промежутку присущи четыре неразрывно связанные между собой вещи:

  • название числового промежутка,
  • отвечающее ему неравенство или двойное неравенство,
  • обозначение,
  • и его геометрический образ в виде изображения на координатной прямой.

Любой числовой промежуток может быть задан любым из трех последних по списку способов: либо неравенством, либо обозначением, либо его изображением на координатной прямой. Причем по данному способу задания, например, по неравенству, с легкостью восстанавливаются и другие (в нашем случае обозначение и геометрический образ).

Переходим к конкретике. Опишем все числовые промежутки с указанных выше четырех сторон.

Таблица числовых промежутков

Итак, в предыдущем пункте мы определили и описали следующие числовые промежутки:

  • открытый числовой луч;
  • числовой луч;
  • интервал;
  • полуинтервал.

Для удобства сведем все данные о числовых промежутках в таблицу. Занесем в нее название числового промежутка, соответствующее ему неравенство, обозначение и изображение на координатной прямой. Получаем следующую таблицу числовых промежутков :


Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.

Ответ - Множество (-∞;+∞) называется числовой прямой, а любое число - точкой этой прямой. Пусть a - произвольная точка числовой прямой и δ

Положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а.

Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным. Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Числовым промежутком называется связанное множество действительных чисел, то есть такое, что если 2 числа принадлежат этому множеству, то все числа заключенные между ними также принадлежат этому множеству. Существует несколько в некотором смысле различных типов непустых числовых промежутков: Прямая, открытый луч, замкнутый луч, отрезок, полуинтервал, интервал

Числовая прямая

Множество всех действительных чиселназывают ещё числовой прямой. Пишут.

На практике нет необходимости различать понятие координатной или числовой прямойв геометрическом смысле и понятие числовой прямой, введённое настоящим определением. Поэтому эти разные понятия обозначаются одним и тем же термином.

Открытый луч

Множество чисел таких, чтоилиназывают открытым числовым лучом. Пишутили соответственно:.

Замкнутый луч

Множество чисел таких, чтоилиназывают замкнутым числовым лучом. Пишутили соответственно:.

Множество чисел таких, чтоназывают числовым отрезком.

Замечание. В определении не оговаривается, что . Предполагается, что случайвозможен. Тогда числовой промежуток превращается в точку.

Интервал

Множество чисел , таких чтоназывают числовым интервалом.

Замечание. Совпадение обозначений открытого луча, прямой и интервала не случайно. Открытый луч можно понимать как интервал, один из концов которого удалён в бесконечность, а числовую прямую - как интервал, оба конца которого удалены в бесконечность.

Полуинтервал

Множество чисел , таких чтоилиназывают числовым полуинтервалом.

Пишут или, соответственно,

3.Функция.График функции. Способы задания функции.

Ответ - Если даны две переменные х и y, то говорят, что переменная y является функцией от переменной х, если задана такая зависимость между этими переменными, которая позволяет для каждого значения ходнозначно определить значение у.

Запись F = у(х) означает, что рассматривается функция, позволяющая для любого значения независимой переменной х (из числа тех, которые аргумент х вообще может принимать) находить соответствующее значение зависимой переменной у.

Способы задания функции.

Функция может быть задана формулой, например:

у = 3х2 – 2.

Функция может быть задана графиком. С помощью графика можно установить, какое значение функции соответствует указанному значению аргумента. Обычно это приближённое значение функции.

4.Основные характеристики функции: монотонность, четность, периодичность.

Ответ - Периодичность Определение. Функция f называется периодичной, если существует такое число
, что f(x+
)=f(x), для всех xD(f). Естественно, что таких чисел существует бесчисленное множество. Наименьшее положительное число ^ Т называется периодом функции. Примеры. А. у = соs х, Т = 2. В. у = tg х, Т =. С. у = {х}, Т = 1. D. у =, эта функция не является периодической. Четность Определение. Функция f называется четной, если для всех х из D(f) выполняется свойство f(-х) = f(х). Если f(-х) = -f(х), то функция называется нечетной. Если ни одно из указанных соотношений не выполняется, то функция называется функцией общего вида. Примеры. А. у = соs (х) - четная; В. у = tg (х) - нечетная; С. у = {х}; y=sin(x+1) – функции общего вида. Монотонность Определение. Функция f: X -> R называется возрастающей (убывающей), если для любых
выполняется условие:
Определение. Функция Х ->R называется монотонной на X, если она на X возрастающая или убывающая. Если f монотонна на некоторых подмножествах из X, то она называется кусочно-монотонной. Пример. у = cos х - кусочно-монотонная функция.


Самое обсуждаемое
Влияние автомобильного транспорта на окружающую среду и жизнь человека Результат влияния автомобильного транспорта на окруж среду Влияние автомобильного транспорта на окружающую среду и жизнь человека Результат влияния автомобильного транспорта на окруж среду
Конспект занятия по математике для детей старшей группы (5–6 лет) «Путешествие в город Математика Игровое занятие по предмету «Заниматика» Конспект занятия по математике для детей старшей группы (5–6 лет) «Путешествие в город Математика Игровое занятие по предмету «Заниматика»
Химическое равновесие Советы как сделать хороший доклад презентации или проекта Химическое равновесие Советы как сделать хороший доклад презентации или проекта


top